From 1 - 10 / 226
  • The data set consists of a subset for the study area of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) in South America (i.e., longitude 85 deg to 30 deg W, latitude 25 deg S to 10 deg N) of the 5-min resolution Global Potential Vegetation data set developed by Navin Ramankutty and Jon Foley at the University of Wisconsin. Data are available in both ASCII GRID and binary image file formats.The original map was derived at a 5-min resolution and contains natural vegetation classified into 15 types. This data set is derived mainly from the DISCover land cover data set, with the regions dominated by land use filled using the vegetation data set of Haxeltine and Prentice (1996). The data set represents the world's potential vegetation (i.e., vegetation that would most likely exist now in the absence of human activities), and not necessarily natural pre-settlement vegetation. This is because human activities such as fire suppression have mo dified the stages of succession at which vegetation communities exist.More information can be found at: ftp://daac.ornl.gov/data/lba/land_use_change/potential_vegetation/comp/README/ [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]lba_pot_vege ]

  • This data set was prepared by BORIS staff by reformatting the original data into the ARC/INFO Generate format. The original data were received in SIF at a scale of 1:50,000. BORIS staff could not find a format document or commercial software for reading SIF; the BOREAS HYD-08 team provided some C source code that could read some of the SIF files. The data cover the BOREAS NSA and SSA. The original data were compiled from information available in the 1970s and 1980s. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]BOREAS_ELEV_ARC ]

  • Net primary production of a saline grassland was determined at the Montecillo study site belonging to Colegio de Postgraduados, Chapingo, near Mexico City, from 1984 to 1994. Monthly dynamics of live biomass and dead matter were monitored, above and below ground, together with monthly litter bag estimates of decomposition rates above and below ground. The method for calculating net primary production accounted for simultaneous growth and death, and carbon flows to all trophic levels. Work was carried out under the UNEP (United Nations Environment Programme) Project on "Primary productivity of grass ecosystems of the tropics" and continued under subsequent UNEP and UK-ODA (Overseas Development Administration) sponsored international projects. Climate data for this site are also available: see Any Other Relevant Information in section 11 of this document. More information on the entire Net Primary Production Project can be found at the NPP homepage. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]NPP_MNT ]

  • The Vegetation Species and Cover Abundance Data Set documents the species present at the FIFE staff data measurement sites. Percent cover is estimated for each species at approximately the time of the IFC's. Disturbances occur over a variety of spatial and temporal scales in North American grasslands, and interactions of these different disturbances affect community structure. Two types of disturbance commonly occur over large spatial scales in grasslands, namely, fire and grazing. Analysis of percent cover of dominant species indicated that composition and heterogeneity was significantly affected by grazing intensity and burning. The effects of disturbances on community structure are not additive, and may not be extrapolated from studies of single factors. The interpretation of patterns in natural communities is clearly scale dependent, and processes may act differently when viewed from different spatial or temporal scales. The effects of scale may not always be predictable; therefore, an understanding of pattern and process at one hierarchical level may not provide useful information about pattern and process at a different hierarchical level. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]FIFE_VEG_SPEC ]

  • This data set is made up of images of forest fires in Russia from NOAA's Operational Significant Event Imagery (OSEI) archive (http://www.osei.noaa.gov) for the 1998 and 1999 seasons. OSEI fire products include multichannel color composite imagery of wildfire and controlled burn events. Products in this event group show fire, smoke, and hotspots (FSMHS) from the fires. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]rlc_forest_fire_img ]

  • The purpose of the SNF study was to improve understanding of the relationship between remotely sensed observations and important biophysical parameters in the boreal forest. A key element of the experiment was the development of methodologies to measure forest stand characteristics to determine values of importance to both remote sensing and ecology. Parameters studied were biomass, leaf area index, above-ground net primary productivity, bark area index and ground coverage by vegetation. Thirty two quaking aspen and thirty one black spruce sites were studied. Sites were chosen in uniform stands of aspen or spruce. Use of multiple plots within each site allowed estimation of the importance of spatial variation in stand parameters. Deciduous vegetation undergoes dramatic changes over the seasonal cycle. The varying amount of green foliage in the canopy effects the transpiration and productivity of the forest. Measurements of changes in the canopy and subcanopy green foliage amount over the spring of 1984 have been made. From above the subcanopy, photographs of the aspen canopy were taken, pointing vertically up. The photographs were taken at two locations in sites 16 and 93 on several different days. Foliage coverage was determined by overlaying grids with 200 points onto the photos of the canopy. The number of points obscured by vegetation were counted. These counts were adjusted for the area of the branches, which had been determined by photos taken before leaf out. The number of foliage points were then scaled between zero, for no leaves, to one, for maximum coverage. Subcanopy leaf extension was measured for beaked hazelnut and mountain maple, the two most common understory shrubs. For selected branches on trees in sites 16 and 93, the length and width of all leaves were measured on several days. These measurements were used to calculate a total leaf area which was scaled between 0 and 1 as with the aspen. The aspen canopy measurements have been combined with the subcanopy measurements and are available in this data set (i.e., SNF Forest Phenology/Leaf Expansion Data). These measurements of leafout show that the subcanopy leaf expansion lags behind that of the canopy. Subcanopy leaf expansion only begins in earnest after the canopy has reached nearly full coverage. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]SNF_LEAF_EXP ]

  • LAI estimates computed from unweighted openness by the canopy program from digitized canopy photographs. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]OTTER_LAI ]

  • This data set is an expanded version of the Costa et al. (2000) data set and consists of a single grid with values of 1 for cells within the basins and 0 for cells outside. The resolution of the data set is 5 x 5 min (approximately 9 x 9 km). The area of this data set is consistent with the study area of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) in South America. The data file is in ASCII GRID format. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]lba_reg_basin ]

  • The BOREAS TE-23 team collected hemispherical photographs in support of its efforts to characterize and interpret information on estimates of canopy architecture and radiative transfer properties for most BOREAS study sites. Various OA, OBS, OJP, YJP, and YA sites in the boreal forest were measured from May to August 1994. The hemispherical photographs were used to derive values of LAI, Leaf angle, Gap fraction, and Clumping index. This documentation describes these derived values. The derived data are stored in tabular ASCII files. The hemispherical photographs are stored in the original set of 42 CD-ROMs, that were supplied by TE-23. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]BOREAS_TE23ARCH ]

  • The BOREAS TE-12 team collected water potential data in 1993 and 1994 from aspen, jack pine and black spruce leaves/needles. Collections were made at the SSA FEN, YJP, YA, OA, and OBS sites. Measurements were made using a pressure chamber on a platform in the field. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]BOREAS_TE12H2OP ]

Datenschutz | Impressum