From 1 - 10 / 820
  • Das kommunale Höhennetz verdichtet das überregionale Höhenfestpunktfeld. Das Beobachtungsintervall beträgt 2 Jahre, wobei die Höhenermittlung jeweils in den geraden Jahren zeitgleich mit dem Leitnivellement vorgenommen wird. Das kommunale Höhennetz dient internen wie externen Stellen als Höhenanschluss für Aufgaben im Hoch- und Tiefbau oder der Erstellung von Lageplänen.

  • Die Stadt Osnabrück – Fachdienst Geodaten - hält für planerische und bauliche Aufgaben ein eigenes Höhenfestpunktfeld vor, das durch Netzverdichtung im Anschluss an das amtliche „Deutsche Haupthöhennetz“ entstanden ist. Die ursprünglichen Normal-Null-Höhen (NN-Höhen) wurden mittlerweile in das amtliche Höhenbezugssystem Höhen über Normalhöhennull (NHN-Höhen) überführt. Auszüge aus dem Höhenverzeichnis einschließlich einer Kartenübersicht können digital (im PDF- oder TIFF-Format) oder analog als Druckausgabe bereitgestellt werden.

  • The Weser estuary at the German North Sea coast serves as a fairway to the harbours of Bremerhaven and Bremen. To ensure safe shipping and navigation, the navigation channel depths are nowadays intensively monitored, and have been so in the past. These are valuable data for consulting and research purposes, and enables investigations leading to a better understanding of hydrodynamics, salt intrusion and morphological processes in the estuary, in the present as well as the past. For recent years, thanks to modern monitoring techniques and digitalization, measuring data has been compiled to consistent digital terrain models of high quality and accuracy. For time periods before the 1990ies however, measurements were scarcer and the data are available only in form of printed bathymetrical and nautical charts. The objective of the project “Historical system states of the Weser estuary (HIWEST)” was to: • digitalize depths measurements starting from 1960, • georeference the data points and • process and compile them to digital terrain models that can be used for research and consulting. The project was led and financed by the Federal Waterways Engineering and Research Institute (BAW). It was supported by the Federal Maritime and Hydrographic Agency (BSH) and by the German Water and Shipping Administration (WSV) who provided printed charts and scanned data sets. The smile consulting GmbH was contracted to process the data and compile digital terrain models. One of the main challenges of the project was georeferencing. While georeferencing and projecting in the horizontal domain was comparatively straightforward, the transformation of depths below different chart datums to the Germans mean height reference system represented a challenge. This was accomplished by an algorithm considering spatial polygons provided by BSH and further meta information on the different levelling systems. The accuracy of the data sets differs depending on the quality of the original data. Since the 1990ies, powerful measurement methods such as airborne laser scanning (ALS) and multibeam echo-sounding has led to high resolutions and high data accuracy. In past surveys, the depths were measured in single-beam echo-soundings, often along individual cross sections, and there is no information between these soundings. As a result, the older terrain models are much smoother then the newer ones and contain less detailed information. More technical details can be found in the appendix of the technical report. The following digital terrain models (DTM, in the following the German abbreviation DGM is used) of the Lower and Outer Weser estuary were made available: • DGM 1966, marking the situation before deepening the Outer Weser to SKN-12 m</li> • DGM 1972, marking the situation before deepening the Lower Weser to SKN-9 m</li> • DGM 1981, marking the situation before extensive river works in the Lower Weser</li> • DGM 1996, marking the situation before deepening the Outer Weser to SKN-14 m</li> • DGM 2002, marking the situation after deepening the Outer Weser to SKN-14 m, reference digital terrain model. The years were chosen so they would represent consistent periods not affected by constructive engineering measures such as channel deepenings, and secondly based on optimal data availability. Each data set however consists not only of data from the respective year, but data had to be added from adjacent years. To close gaps, data from recent surveys were used. The data sets span the whole estuary from the North Sea to the tidal weir in the city of Bremen and are available as 1x1 m raster data sets. How to cite the HIWEST data: <strong style="color: red;"> The data set is only to be quoted together with the Technical Report.</strong> Report: Bundesanstalt für Wasserbau (2021): Historical digital terrain models of the Weser Estuary (HIWEST). Technical Report B3955.02.04.70168-6. Bundesanstalt für Wasserbau. https://henry.baw.de/handle/20.500.11970/107521 Data set: Bundesanstalt für Wasserbau (2020): Historical digital terrain model data of the Weser Estuary (HIWEST) [Data set]. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.5200.0001

  • Die Datei enthält alle Lage- und Höhenfestpunkte im Stadtgebiet der Universitäts- und Hansestadt Greifswald

  • Digitale Oberflächenmodelle (DOM) beschreiben die Erdoberfläche inklusive aller festen und beweglichen Objekte. Dies sind u. a. Wälder und Bauwerke (Gebäude, Brücken und Hochspannungsleitungen) sowie der ruhende und fließende Verkehr. Sie werden aus originären Messdaten als ein regelmäßiges Gitter interpoliert. Dominierende Erfassungsmethoden für die Erhebung der Messdaten sind das Airborne Laserscanning und die Bildkorrelation auf Basis orientierter Luftbildpaare.

  • Digitale Geländemodelle (DGM) sind numerische, auf ein regelmäßiges Gitter reduzierte Modelle der Geländehöhen und -formen. Sie beschreiben die Geländeoberfläche als die Grenzfläche zwischen dem festen Erdkörper und dem Wasser einerseits und der Luft andererseits durch eine repräsentative dreidimensionale Punktmenge. Neben regelmäßig verteilten Höhenpunkten (DGM-Gitter) können DGM Strukturelemente in Form von Geländelinien und besonderen Geländepunkten enthalten. Im DGM50 werden Punkte mit einer Gitterweite von 50 m geführt und ggf. durch Strukturelemente ergänzt. DGM stellen keine Objekte auf der Erdoberfläche dar (z. B. Bäume oder Häuser).

  • ATKIS - DGM 1 Stadt Bremerhaven - Downloaddienst

  • Das Digitale Oberflächenmodell (DOM) beschreibt die Oberfläche der Erde, der Vegetation und der Bebauung durch die räumlichen Koordinaten einer repräsentativen Menge von Boden- und Nichtbodenpunkten aus Laserscanner-Messaufnahmen. Die Aktualisierung erfolgt seit 2020/2021 im 6-Jahres-Turnus.

  • Digitale Geländemodelle (DGM) sind numerische, auf ein regelmäßiges Gitter reduzierte Modelle der Geländehöhen und -formen. Sie beschreiben die Geländeoberfläche als die Grenzfläche zwischen dem festen Erdkörper und dem Wasser einerseits und der Luft andererseits durch eine repräsentative dreidimensionale Punktmenge. Neben regelmäßig verteilten Höhenpunkten (DGM-Gitter) können DGM Strukturelemente in Form von Geländelinien und besonderen Geländepunkten enthalten. Im DGM10 werden Punkte mit einer Gitterweite von 10 m geführt und ggf. durch Strukturelemente ergänzt. DGM stellen keine Objekte auf der Erdoberfläche dar (z. B. Bäume oder Häuser).

  • Dieser Downloaddienst stellt Daten zu den INSPIRE-Themen Höhe und Gebäude in der Freien Hansestadt Bremen (FHB) bereit. Das 3D-Stadtmodell gibt die dritte Dimension die Höhe der Gebäude wieder und wird auf der Grundlage von Daten aus dem Amtlichen Liegenschaftskataster (ALKIS), dem Digitalen Geländemodell (DGM) und Digitalen Orthophotos (DOP) generiert. Detailstufe: LoD2 (Level of Detail2) als Klötzchen Modell mit standardisierter Dachform

Barrierefreiheit | Datenschutz | Impressum