Keyword

climate simulation

833 record(s)

 

Provided by

Type of resources

Topics

Keywords

Contact for the resource

Update frequencies

From 1 - 10 / 833
  • This experiment comprises 4 different simulations: - hind-cast simulations, free-running - SSTs/SICs: global data set HadISST provided by the UK Met Office Hadley Centre - model data output mostly as 10-hourly global snapshots, monthly averages or as monthly accumulated variables, on model levels or pressure levels, respectively RC1-base-07: T42L90MA 1960–2011 RC1-base-07a: same as RC1-base-07, with corrected optical properties of stratospheric aerosol 1990-2010 RC1-base-08: T42L47MA 1960-2011 RC1-base-08a: same as RC1-base-08, with corrected optical properties of stratospheric aerosol 1990-2010 For further studies based on simulations of the ESCiMo project and on the EMAC model please also refer to: https://www.atmos-chem-phys.net/special_issue812.html https://gmd.copernicus.org/articles/special_issue10_22.html https://www.atmos-chem-phys.net/special_issue22.html http://www.pa.op.dlr.de/~PatrickJoeckel/ESCiMo/publications/escimo_publications.html

  • This experiment comprises 3 different simulations: - future simulations scenario RCP6.0 - model data output mostly as 10-hourly global snapshots, monthly averages or as monthly accumulated variables, on model levels or pressure levels, respectively RC2-base-04: SSTs/SICs: taken from coupled HADGEM2-ES simulation T42L90MA 1960-2099 RC2-base-05: same as RC2-base-04 but with resolution T42L47MA 1960-2099 RC2-oce-01: with interactive MPI ocean T42L47MA/GR30L40 1960-2100 For further studies based on simulations of the ESCiMo project and on the EMAC model please also refer to: https://www.atmos-chem-phys.net/special_issue812.html https://gmd.copernicus.org/articles/special_issue10_22.html https://www.atmos-chem-phys.net/special_issue22.html http://www.pa.op.dlr.de/~PatrickJoeckel/ESCiMo/publications/escimo_publications.html

  • This experiment comprises 5 different simulations: - hind-cast simulations with specified dynamics from 1979 to 2013 - ERA-Interim SSTs/SICs RC1SD-base-07 T42L90MA “wave zero” (i.e. the global mean) temperature included for the Newtonian relaxation RC1SD-base-08 T42L47MA global mean temperature (wave 0) included for the Newtonian relaxation RC1SD-base-09 T42L47MA global mean temperature (wave 0) not included for the Newtonian relaxation RC1SD-base-10 T42L90MA global mean temperature (wave 0) not included for the Newtonian relaxation RC1SD-base-10a (years 2000-2014) T42L90MA global mean temperature (wave 0) not included for the Newtonian relaxation with corrected road traffic emissions and stratospheric aerosol optical properties For further studies based on simulations of the ESCiMo project and on the EMAC model please also refer to: https://www.atmos-chem-phys.net/special_issue812.html https://gmd.copernicus.org/articles/special_issue10_22.html https://www.atmos-chem-phys.net/special_issue22.html http://www.pa.op.dlr.de/~PatrickJoeckel/ESCiMo/publications/escimo_publications.html

  • The experiment CLM_B1_1_D3 contains European regional climate simulations of the years 2001-2100 on a regular geographical grid. The data are generated during post processing of the corresponding data stream 2 experiment (CLM_B1_1_D2) of regional climate model runs (CLM non hydrostatic, see http://www.clm-community.eu ). It is forced by the first (_1_) run of the global IPCC scenario B1 (EH5-T63L31_OM-GR1.5L40_B1_1_6H), which describes a possible future world with global population peaking in mid-century and rapid change in economic structures towards a service and information economy. An introduction of clean and resource efficient technologies was assumed. In data stream 3 (_D3) the output variables of CLM data stream 2 and some additionally derived parameters are stored as time series on a regular geographical grid (0.2 degree res.). The transformation has been done via CDO routines. Please note, that none of the variables has been corrected for topographical differences between the two grids. The model domain of data stream 3 covers the European region starting at 34.6/-10.6 (lat/lon, centre of lower left grid box). The number of grid points is 177/238 (lat/lon). For some model variables and additionally derived parameters some statistics on daily, monthly or yearly basis are available. Please contact sga"at"dkrz.de for data request details. See http://sga.wdc-climate.de for more details on CLM simulations in the context of the BMBF funding priority "klimazwei", some useful information on handling climate model data and the data access regulations. The output format is netCDF. Experiment with CLM 2.4.11 on NEC-SX6(hurrikan). raw data: hpss:/dxul/ut/k/k204095/prism/experiments/B1_1 data years < 2060: /dxul/ut/k/k204095/prism/experiments/B1_1/outdata/clm/yearnnnn data years > 2059: /dxul/prj/ir0264/arch/CLM/prism/experiments/B1_1/outdata/clm/yearnnnn

  • The experiment CLM_B1_2_D2 contains European regional climate simulations of the years 2001-2100 on a rotated grid (CLM non hydrostatic, 0.165 deg. hor. res., see http://www.clm-community.eu ). It is forced by the second (_2_) run of the global IPCC scenario B1 (EH5-T63L31_OM-GR1.5L40_B1_2_6H), which describes a possible future world with global population peaking in mid-century and rapid change in economic structures towards a service and information economy. An introduction of clean and resource efficient technologies was assumed. In data stream 2 (_D2) the output variables of CLM are stored as time series on a rotated grid. The model region starts at -20.8725/-23.7275 (lat/lon in rotated coordinates; centre of lower left grid box) with rotated North Pole at 39.25/-162.0 (lat/lon). The number of grid points is 255/241 (lat/lon). The sponge zone (numerically unreliable boundary grid points) of the original model output has been cut off. The regional model variables include two-dimensional near surface fields, as well as soil and atmospheric fields on different layers. The soil fields are simulated on 10 different levels with a maximum depth of 15 meters. The atmospheric fields are given on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa). The time interval of the output fields ranges from 1 to 3 hours and includes daily output fields, depending on the respective variables. Please contact sga"at"dkrz.de for data request details. See http://sga.wdc-climate.de for more details on CLM simulations in the context of the BMBF funding priority "klimazwei", some useful information on handling climate model data and the data access regulations. The output format is netCDF Experiment with CLM 2.4.11 on NEC-SX6(hurrikan) raw data: hpss:/dxul/ut/k/k204095/prism/experiments/B1_2

  • "esmX" are an experiment family of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ) including esmHistorical, esmrcp85, esmFdbk1, esmFixClim1 and esmFixClim2. CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 esm data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. esmX: Variation of CMIP5 experiment with alternate forcing (emissions-forced historical and rcp85) or alternate feedback (CO2 increase feedback on radiation code for esmFdbk1, esmFixClim1/2). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc" (e.g.: esmrcp85/Amon/tas/bcc-csm1-1/r1i1p1/tas_Amon_bcc-csm1-1_esmrcp85_r1i1p1_200601-209912.nc )

  • "noVolcYYYY" are an experiment family of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 noVolc data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. noVolc (hindcast without volcanoes) - Hindcast without volcanoes. Additional 10yr run for experiment 1.1 without including volcanic eruptions of Agung, El Chichon and Pinatubo eruptions. Individual noVolc experiments are named noVolcYYYY with starting year YYYY. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc" (e.g.: noVolc1960/Amon/tas/MPI-ESM-LR/r1i1p1/tas_Amon_MPI-ESM-LR_noVolc1960_r1i1p1_196101-197012.nc )

  • Simulated 2D residual velocity fields in the inner German Bight were subjected to Principal Component Analysis (PCA). Residual currents were obtained from coastDat2 barotropic 2D simulations with the hydrodynamic model TRIM-NP V2.1.22 in barotropic 2D mode on a Cartesian grid (1.6km spatial resolution) stored on an hourly basis for the years 1948 - 2012 (doi:10.1594/WDCC/coastDat-2_TRIM-NP-2d) and later extended until August 2015. The present analysis refers to the period Jan 1958 - Aug 2015. The spatial domain considered is the region to the east of 6 degrees east and to the south of 55.6 degrees north. All grid nodes with a bathymetry of less than 10m were excluded. Residual velocities were calculated in two different ways: 1.) as 25h means, 2.) as monthly means. Both types of residual current data are available from * RESIDUAL_CURRENTS_195801_201508 The directory contains sub-directories for years and months. Daily residual currents for the 13th of September 1974, for instance, are stored in * RESIDUAL_CURRENTS_195801_201508/YEAR_1974/MONTH_09/TRIM2D_1974_09_13_means.nc while monthly mean residual currents for September 1974 are stored in: * RESIDUAL_CURRENTS_195801_201508/YEAR_1974/TRIM2D_1974_09_means.nc All current fields provided were interpolated from the original Cartesian model grid to a more convenient regular geographical grid (116x76 nodes). Mean residual currents are stored in: * mean_residual_currents.nc This data set contains residual velocities both on original Cartesian grid nodes and interpolated to the geographical grid. An example plot is provided: * mean_residual_currents.png For PCA, two residual velocity components from each of 12133 Cartesian grid nodes were combined into one data vector (length 2x12133), referring to 21061 daily or 692 monthly time levels. Results of two independent PCAs for either daily or monthly mean fields are stored in: * PCA_daily_residual_currents.nc * PCA_monthly_residual_currents.nc Files contain three leading Principal Components (PCs) and corresponding Emipirical Orthogonal Functions (EOFs). Again EOFs were also interpolated to a regular geographical grid. PC time series are also stored in plain ASCII format: * PCs_daily.txt * PCs_monthly.txt For monthly fields the number N of variables (N=2x12133) is much larger than the number T of time levels (T=692). Therefore, to reduce computational demands, the roles of time and space were formally interchanged. Having conducted the PCA the EOFs were then transformed back to the original spatial coordinates (cf. Section 12.2.6 in von Storch and Zwiers (1999), Statistical Analysis in Climate Research, Cambridge University Press). A much larger number of time levels made even this approach prohibitive for the full set of daily data. Therefore, PCAs were performed for six sub-periods (1958-1965, 1966-1975, 1976-1985, 1986-1995, 1996-2005, 2006-2015(Aug)) independently. EOFs obtained from these six sub-periods were then averaged to obtain EOFs representative for the whole period. Corresponding PCs were calculated by projecting daily fields onto these average EOFs. IMPORTANT: In contrast with PCA of monthly data, the PCA of daily data INVOLVES SOME APPROXIMATIONS! EOFs on the original nodes were normalized to have unit lengths. The following figures, * daily_EOF1.png * daily_EOF2.png * daily_EOF3.png show the first three EOFs obtained from daily data, assuming that corresponding PCs have the value of one standard deviation. The following two plots, * monthly_EOF1.png * monthly_EOF2.png show the leading EOFs for monthly mean data. EOF3 is omitted as it represents just a very small percentage of overall variance (1.7%).

  • rcp45 is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 additional historical data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. rcp45 (4.1 RCP4.5) - Version 2: Future projection (2006-2100) forced by RCP4.5. RCP4.5 is a representative concentration pathway which approximately results in a radiative forcing of 4.5 W m-2 at year 2100, relative to pre-industrial conditions. RCPs are time-dependent, consistent projections of emissions and concentrations of radiatively active gases and particles. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc"

  • The experiment CLM_C20_3_D3 contains European regional climate simulations of the years 1960-2000 on a regular geographical grid. The data are generated during post processing of the corresponding data stream 2 experiment (CLM_C20_3_D2) of regional climate model runs (CLM non hydrostatic, see http://www.clm-community.eu ). The simulations of the 20th century (1960-2000) have been forced by the third (_3_) run of the global 20th century climate (EH5-T63L31_OM-GR1.5L40_20C_3_6H) with observed anthropogenic forcing. In data stream 3 (_D3) the output variables of CLM data stream 2 and some additionally derived parameters are stored as time series on a regular grid with a horizontal spacing of 0.2 degree. The model parameters have been transformed onto the regular geographical grid by the CDO routines. Please note, that none of the variables has been corrected for topographical differences between the two grids. The model domain of data stream 3 covers the European region starting at 34.6/-10.6 (lat/lon, centre of lower left grid box) with an increment of 0.2 degree. The number of grid points is 177/238 (lat/lon). For some model variables and additionally derived parameters some statistics on daily, monthly or yearly basis are available. See also http://sga.wdc-climate.de for a list of available parameters. Please contact sga"at"dkrz.de for data request details. See http://sga.wdc-climate.de for more details on CLM simulations in the context of the BMBF funding priority "klimazwei", some useful information on handling climate model data and the data access regulations. The output format is netCDF Experiment with CLM 2.4.11 on NEC-SX6(hurrikan) raw data: hpss:/dxul/ut/k/k204095/prism/experiments/C20_3

Barrierefreiheit | Datenschutz | Impressum