• www.geodatenkatalog.de (S3L)
  •  
  •  
  •  

  Noise - Road Traffic Lden (AI Prediction) - Germany, 2017

This dataset includes a road traffic noise estimation using ensemble learning and multimodal geodata. The official noise indicator, Lden (Day-Evening-Night Level), mapped according to the European Noise Directive (2002/49/EC) for large urban agglomerations is extrapolated to suburban areas and beyond. This novel information closes previous data gaps and is herewith available for environmental noise assessments evaluating the impact of road traffic noise on human health and well-being at a spatial resolution of 10 x 10m nation-wide.
 
Citation proposal
Jeroen Staab (German Aerospace Center (DLR)) - Michael Wurm (German Aerospace Center (DLR)) - Hannes Taubenböck (German Aerospace Center (DLR)). Noise - Road Traffic Lden (AI Prediction) - Germany, 2017. https://gdk.gdi-de.org/geonetwork/srv/api/records/3eab45fd-5049-4c93-8041-d949bea00b0a
 

Simple

Date ( Creation )
2025-10-16T10:48:00
Edition
1.0
Identifier
https://geoservice.dlr.de/catalogue/srv/metadata/3eab45fd-5049-4c93-8041-d949bea00b0a
Presentation form
Digital map
Other citation details
DOI: 10.15489/5non57bdli63
Status
Completed

  Point of contact

German Aerospace Center (DLR)  

  Author

German Aerospace Center (DLR) - Jeroen Staab  

  Author

German Aerospace Center (DLR) - Michael Wurm  

  Author

German Aerospace Center (DLR) - Hannes Taubenböck  

Maintenance and update frequency
As needed
GEMET - INSPIRE themes, version 1.0 ( Theme )
  • Transport networks
  • Human health and safety
Keywords
  • Road Traffic
  • Noise
  • Exposure
  • Residential environment
  • Health
  • 2002/49/EC
  • Germany
Use limitation
Nutzungseinschränkungen: Das DLR ist nicht haftbar für Schäden, die sich aus der Nutzung ergeben. / Use Limitations: DLR not liable for damage resulting from use.
Access constraints
Other restrictions
Other constraints
License
Use constraints
License
Use constraints
Other restrictions
Other constraints
Nutzungsbedingungen: Lizenz, https://creativecommons.org/licenses/by-nc/4.0 / Terms of use: License, https://creativecommons.org/licenses/by-nc/4.0
Other constraints

{"id": "cc-by/4.0",

"name": "Creative Commons Namensnennung - Nicht kommerziell 4.0 International (CC BY 4.0)",

"url": "http://dcat-ap.de/def/licenses/cc-by/4.0",

"quelle": "Copyright DLR (year of production)"}

Spatial representation type
Grid
Denominator
20000
Metadata language
English
Character set
UTF8
Topic category
  • Transportation
  • Environment
N
S
E
W


Number of dimensions
2
Dimension name
Column
Dimension size
65120
Resolution
10  m
Dimension name
Row
Dimension size
87740
Resolution
10  m
Cell geometry
Area
Transformation parameter availability
false
Distribution format
  • GeoTIFF ( )

    Specification

OnLine resource
N2N_NOISE_AI_DE_2017  

Noise - Road Traffic Lden (AI Prediction) - Germany, 2017

OnLine resource
EOC Geoservice Map Context  

EOC Geoservice Map Context (eoc:n2nnoisea)

OnLine resource
HTTP Download  

HTTP Download (Noise2Nako NOISE)

OnLine resource
Noise2NAKO(AI) project website  

Website of the Noise2NAKO(AI) project

OnLine resource
Scientific publication  

Jeroen Staab, Matthias Weigand, Arthur Schady, Ariane Droin, Donatella Cea, Marco Dallavalle, Nikolaos Nikolaou, Mahyar Valizadeh, Kathrin Wolf, Michael Wurm, Tobia Lakes, Hannes Taubenböck. 2025. National road traffic noise estimation with ensemble learning and multimodal geodata, Transportation Research Part D: Transport and Environment. 149, 105063.

Hierarchy level
Dataset

Domain consistency

Measure identification
INSPIRE / Conformity_001

Conformance result

Date ( Publication )
2010-12-08
Explanation
See the referenced specification.
Pass
true
Statement
Input data: Selected strategic noise maps reported under under the 2002/49/EC obligations to EEA (from 10.15489/a6wg11lrub77), land-cover information (Land Cover DE - Sentinel-2 - Germany, 2015; https://doi.org/10.15489/1ccmlap3mn39 ), NDVI mosaic based on Copernicus Sentinel-2 (Sentinel-2 - Vegetation Index (NDVI) - Germany, 2015, https://doi.org/10.15489/z5rq0pr8wv85)

gmd:MD_Metadata

File identifier
3eab45fd-5049-4c93-8041-d949bea00b0a   XML
Metadata language
English
Character set
UTF8
Hierarchy level
Dataset
Hierarchy level name
Dataset
Date stamp
2025-11-27T16:23:59
Metadata standard name
19115-1:2014/19139
Metadata standard version
1.0

  Point of contact

German Aerospace Center (DLR)  

 
 

  Overviews

thumbnail
large_thumbnail

  Provided by

  Views

  • INSPIRE
  • Simple
  • Full
  • XML
3eab45fd-5049-4c93-8041-d949bea00b0a   Access to the portal Read here the full details and access to the data.

  Associated resources

Not available


  •  
  •