SaWaM WRF physics parameterization scheme combination #4 (RUN4)
While climate information from General Circulation Models (GCMs) are usually too coarse for climate impact modelers or decision makers from various disciplines (e.g., hydrology, agriculture), Regional Climate Models (RCMs) and Regional Earth System Models (RESMs) provide feasible solutions for downscaling GCM output to finer spatiotemporal scales. However, it is well known that the model performance depends largely on the choice of the physical parameterization schemes, but optimal configurations may vary from region to region. Besides land-surface processes, the most crucial processes to be parameterized in ESMs include radiation (RA), cumulus convection (CU), cloud microphysics (MP), and planetary boundary layer (PBL), partly with complex interactions. Before conducting long-term climate simulations, it is therefore indispensable to identify a suitable combination of physics parameterization schemes for these processes. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product ERA-Interim as lateral boundary conditions, we derived an ensemble of 16 physics parameterization runs for a larger domain in Northern sub-Saharan Africa (NSSA), northwards of the equator, using two different CU-, MP-, PBL-, and RA schemes, respectively, using the Weather Research and Forecasting (WRF) model (Version v3.9) for the period 2006-2010 in a resolution of 0.1 degree horizontal resolution.
Conclusions about suitable physical parameterization schemes may vary within the study area. We therefore want to stimulate the development of own performance evaluation studies for climate simulations or subsequent impact studies over specific (sub-)regions in NSSA. For this reason, selected climate surface variables of the physics ensemble (i.e. the 16 experiments from 2006-2010) are provided.
For more information about the setup of the experiments, please see:
Laux et al., 2021: A high-resolution regional climate model physics ensemble for Northern sub-Saharan Africa. Frontiers in Earth Science (under revision).
|
Citation proposal
Dr. Patrick Laux (Karlsruhe Institute of Technology). SaWaM WRF physics parameterization scheme combination #4 (RUN4). https://gdk.gdi-de.org/geonetwork/srv/api/records/de.dkrz.wdcc.iso3889827 |
Simple
- Alternate title
- SaWaM WRF physics parameterization scheme combination #4 (RUN4)
- Date ( Creation )
- 2021-07-15
- Identifier
- None
- Identifier
- doi:10.26050/WDCC/SaWaM_WRF_phys_par_comb_r4 / SaWaM WRF physics parameterization scheme combination #4 (RUN4)
- Other citation details
- doi:10.26050/WDCC/SaWaM_WRF_phys_par_comb_r4
Point of contact
- Metadata language
- eng English
- Begin date
- 2006-01-01
- End date
- 2010-12-31
- Distribution format
-
- NetCDF (network Common Data Format )
Distributor
- Units of distribution
- Mb
- Transfer size
- 27486
- OnLine resource
- http://doi.org/doi:10.26050/WDCC/SaWaM_WRF_phys_par_comb_r4
- Hierarchy level
- series Series
gmd:MD_Metadata
- File identifier
- de.dkrz.wdcc.iso3889827 XML
- Hierarchy level
- series Series
- Hierarchy level name
- SaWaM_WRF_phys_par_comb_r4
- Date stamp
- 2021-08-06T04:26:05
- Metadata standard name
- ISO 19115
- Metadata standard version
- ISO 19139 / DKRZ ISO Simple Profile V1.0