From 1 - 10 / 227
  • The data set consists of a subset of the Climate, People, and Environment Program (CPEP) Global River Discharge Data Set for the study area of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) in South America (i.e., longitude 85 deg to 30 deg W, latitude 25 deg S to 10 deg N).The CPEP global river discharge data set is a compilation of monthly mean discharge data for over 2600 sites worldwide. The data sources are RivDIS 2.0, the United States Geological Survey, and the Brazilian National Department of Water and Electrical Energy. The period of record is variable, from 3 years to greater than 100.The purpose of this compilation is to provide detailed hydrographic information to the climate research community in as general a format as possible. Data is provided in units of meters cubed per second (m**3/sec) in ASCII format.Data from stations with less than 3 years of information or with basin area less than 5000 km2 were excluded from this compilation. Therefore, the original sources may have more sites available. No further documentation is available on this data set. Users should refer to the data originators for documentation. More information can be found at: ftp://daac.ornl.gov/data/lba/surf_hydro_and_water_chem/sage/comp/README/ [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]lba_cpep ]

  • The BOREAS TE-12 team collected PAR data sets in support of its efforts to characterize and interpret information on shoot geometry, leaf optical properties, leaf water potential, and leaf gas exchange. The data were collected at the SSA-OBS site from 04-Jul-1996 to 25-Jul-1996. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]BOREAS_TE12PARC ]

  • The NPP Database contains documented field measurements of NPP for global terrestrial sites compiled from published literature and other extant data sources. The NPP Database contains biomass dynamics, climate, and site-characteristics data georeferenced to each intensive site. A major goal of the data compilation is to use consistent and standard well-documented methods to estimate NPP from the field data. Other important components of the database include a summary, investigator contact information, and a list of key references for each site. As far as possible, the original principal investigator or his/her successor has been contacted to review the data and documentation. The NPP Database currently contains detailed data for over 60 intensive study sites. A majority of these sites are grasslands, the remainder being tropical forests, boreal forests, and tundra study sites. Some combination of above-ground annual peak live biomass data and/or seasonal biomass dynamics data are available for all sites. Many sites also have data on below-ground biomass and/or turnover. Estimates of net primary productivity are included, where available, for individual sites, and as part of the NPP Summary tables. Climate and soils data are available for all sites in varying degrees of detail. The sites have been grouped according to vegetation maps based upon Bailey ecoregions, Holdridge Life-Zones, Matthews vegetation classes, and Olson World Ecosystem Complexes. Previously compiled multi-site data sets of georeferenced NPP estimates are also provided. NPP estimates are available from a number of different collections, containing more than 1700 sites but with less information available for each individual site as compared to the intensive sites. Records for these sites typically include an NPP value, latitude and longitude, original source of the data, and sometimes information on vegetation type, management, soils, and local climate. More information on the entire Net Primary Productivity Project can be found at the NPP home page, with links to further details on individual study sites or multi-site collections. Users are encouraged to browse these Web pages to find details of original studies, methodologies, and original research contacts. NPP data are available on-line from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. Data Citation: Cite the data sets using the following reference format: Author, P. A., and M. B. Author. Year. Data Set Title. Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. For example: Williamson, P., and J. Pitman. 1999. NPP Grassland: Beacon Hill, U.K. 1972-1973. Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]NPP_NLS ]

  • The data set consists of a subset for the study area of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) in South America (i.e., longitude 85 deg to 30 deg W, latitude 25 deg S to 10 deg N) of the 5-min resolution Global Potential Vegetation data set developed by Navin Ramankutty and Jon Foley at the University of Wisconsin. Data are available in both ASCII GRID and binary image file formats.The original map was derived at a 5-min resolution and contains natural vegetation classified into 15 types. This data set is derived mainly from the DISCover land cover data set, with the regions dominated by land use filled using the vegetation data set of Haxeltine and Prentice (1996). The data set represents the world's potential vegetation (i.e., vegetation that would most likely exist now in the absence of human activities), and not necessarily natural pre-settlement vegetation. This is because human activities such as fire suppression have mo dified the stages of succession at which vegetation communities exist.More information can be found at: ftp://daac.ornl.gov/data/lba/land_use_change/potential_vegetation/comp/README/ [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]lba_pot_vege ]

  • The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) is an ongoing multiinstitutional, international effort addressing the response of biogeography and biogeochemistry to environmental variability in climate and other drivers in both space and time domains. The objectives of VEMAP are the intercomparison of biogeochemistry models and vegetationtype distribution models (biogeography models) and determination of their sensitivity to changing climate, elevated atmospheric carbon dioxide concentrations, and other sources of altered forcing. The vegetation data set includes one variable: vegetation type. Vegetation types are defined physiognomically in terms of dominant lifeform and leaf characteristics (including leaf seasonal duration, shape, and size) and, in the case of grasslands, physiologically with respect to dominance of species with the C3 versus C4 photosynthetic pathway. The physiognomic classification criteria are based on our understanding of vegetation characteristics that influence biogeochemical dynamics (Running et al. 1994). The U.S. distribution of these types is based on a 0.5 degree latitude/longitude gridded map of Kuchler's (1964, 1975) potential natural vegetation provided by the TEM group (D. Kicklighter and A.D. McGuire, personal communication). Kuchler's map is based on current vegetation and historical information and, for purposes of VEMAP Phase I model experiments, is presumed to represent potential vegetation under current climate and atmospheric CO2 concentrations (355 ppm). A complete users guide to the VEMAP Phase I database which includes more information about this data set can be found at ftp://daac.ornl.gov/data/vemap-1/comp/Phase_1_User_Guide.pdf. ORNL DAAC maintains additional information associated with the VEMAP Project. Data Citation: This data set should be cited as follows: Kittel, T. G. F., N. A. Rosenbloom, T. H. Painter, D. S. Schimel, H. H. Fisher, A. Grimsdell, VEMAP Participants, C. Daly, and E. R. Hunt, Jr. 1998. VEMAP Phase I Database, revised. Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]VEMAP_1_VEGETATION ]

  • The BOREAS TF-11 team gathered a variety of data to complement their tower flux measurements collected at the SSA Fen site. These data are LAI measurements made by the TF-11 team throughout the 1995 growing season. The data include the LAI of plants that fall into six categories: total, Carex spp., Betula pumila, Menyanthes trifoliata, Salix spp., and other vascular plants. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]BOREAS_TF11LAI ]

  • A major aspect of the ground data collection effort in the SNF during the summers of 1983 and 1984 was the acquisition of helicopter canopy reflectance measurements. Canopy measurements were made at numerous sites with a helicopter-mounted Barnes multiband radiometer (MMR). MMR data were collected on ten dates in 1983 and eight dates in 1984. An additional Barnes radiometer was used to make simultaneous reference panel measurements. The canopy reflectance was derived from the canopy and reference panel measurements. All canopy and reference panel measurements were made under clear sky conditions. A majority of the helicopter measurements were taken at nadir view, although some off-nadir view angle measurements were taken primarily over black spruce and aspen sites. The reflectance factor is the ratio of radiant flux of the canopy measurement to that of the reference or calibration panel. Another component to be considered is atmospheric scatter, especially for aircraft measurements taken at higher altitudes. The amount of atmospheric scattering can be determined by using reflectance measurements of water targets. Reflectance measurements over water targets are included for all acquisitions in 1983. No water target measurements were taken during the 1984 field campaign. The summarized MMR data for both years, 1983 and 1984, are included in this data set. Fields include site ID number, number of observations averaged, code for altitude of instrument above the canopy, the time at which observations begin, the time at which observations end, sun zenith angle, sun azimuth angle, and reflectance for each of the bands (with standard deviations included within parenthesis). All measurements were taken at nadir, except where otherwise indicated. In 1984, MMR data were collected using off nadir view angles to measure the bi-directional reflectance characteristics of the forests. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]SNF_HELO_MMR ]

  • Net primary production of a saline grassland was determined at the Montecillo study site belonging to Colegio de Postgraduados, Chapingo, near Mexico City, from 1984 to 1994. Monthly dynamics of live biomass and dead matter were monitored, above and below ground, together with monthly litter bag estimates of decomposition rates above and below ground. The method for calculating net primary production accounted for simultaneous growth and death, and carbon flows to all trophic levels. Work was carried out under the UNEP (United Nations Environment Programme) Project on "Primary productivity of grass ecosystems of the tropics" and continued under subsequent UNEP and UK-ODA (Overseas Development Administration) sponsored international projects. Climate data for this site are also available: see Any Other Relevant Information in section 11 of this document. More information on the entire Net Primary Production Project can be found at the NPP homepage. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]NPP_MNT ]

  • LAI estimates computed from unweighted openness by the canopy program from digitized canopy photographs. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]OTTER_LAI ]

  • This data set consists of a southern African subset of the Global Land One-Kilometer Base Elevation (GLOBE) digital elevation model (DEM) data in both ASCII GRID and binary image file formats. The Global Land One-Kilometer Base Elevation (GLOBE) digital elevation model (DEM) is a global data set with horizontal grid spacing of 30 arc-seconds (0.008333... degrees) in latitude and longitude, resulting in dimensions of 21,600 rows and 43,200 columns. At the Equator a degree of latitude is about 111 kilometers. GLOBE has 120 values per degree, giving GLOBE slightly better than 1-km gridding at the Equator, with progressively finer gridding longitudinally toward the Poles. The horizontal coordinate system is seconds of latitude and longitude referenced to World Geodetic System 84 (WGS84). The vertical units represent elevation in meters above Mean Sea Level. The elevation values range from -407 to 8,752 meters on land. In GLOBE Version 1.0, ocean areas have been masked as no data and have been assigned a value of -500. Because of the nature of the raster structure of the DEM, small islands in the ocean less than approximately 1 square kilometer (specifically, those that are not characterized by at least one 30 grid cell and/or do not have coastlines digitized into Digital Chart of the World or World Vector Shoreline) may not be represented. More information about the procedure used to create the southern African subset is described in the accompanying file ftp://daac.ornl.gov/data/safari2k/almanac/globe_dem/comp/so_africa_dem_readme.pdf. [ This document was provided by NASA's Global Change Master Directory. For more information on the source of this metadata please visit http://gcmd.nasa.gov/r/geoss/[GCMD]s2k_globe_dem ]

Datenschutz | Impressum