From 1 - 10 / 62
  • Accurate initialization of the water vapor field is important for NWP. With recent advances in Global Positioning System (GPS) atmospheric remote sensing, ground-based GPS receivers have become an important instrument that can provide high resolution water vapor measurements operationally at low cost with an accuracy of a few millimeters. The system can operate in all weather conditions. During the COPS campaign, a dense network of GPS receivers was installed. This data has been assimilated in real-time into the MM5 4DVAR system to improve quantitative precipitation forecasts and process understanding. Operational forecasts initialized with 4DVAR and corresponding CONTROL forecasts, initialized only by the ECMWF forecast,ran the whole COPS/D-PHASE period to provide a basis for future statistical investigations. This experiment contains only the innermost domain (2km) of the forecast initialized with the operational ECMWF forecast only (CONTROL). The corresponding 4DVAR forecast can be found as experiment dphase_mm5_2_4d. Assimilation run: - 18 km horizontal resolution - 36 level up tp 100 hPa - 64x70 grid points - MM5 3.4 (4DVAR version) - Kuo convection scheme - MRF PBL scheme - Simple radiation - Warm cloud microphysics - 3 hour assimilation window Free forecast run: only innermost 2km domain (CDOM) was archived) - Triple 2-way nested 24h forecast (18, 6, 2 km resolution) - 36 level up to 100 hPa - 64x70 points (18 km), 106x109 points (6 km), 169x184 points (2 km) - MM5 3.7.4 - Kain Fritsch 2 cumulus (no parameterization in the 2 km domain) - Reisner2 cloud microphysics - RRTM LW + Dudhia SW radiation - MRF PBL scheme - 5 layer soil model Note: here the datasets differ in time resolution (DDOM:1h, CDOM 15min) not in region. Grid description:"CDOM"+"DDOM":xinc/yinc:2.0 xnpole/ynpole:0.0 xfirst:6.0205 yfirst:47.0167 xsize:184.0 ysize:169.0

  • Non hydrostatic model Moloch, developed at ISAC CNR and operational at ARPAL CFMI-PC. Initial and boundary conditions provided by the model chain based on bolam and initialized with the 00 UTC ECMWF run. Grid description: DDOM: xfirst: -1.99 yfirst: -1.93 xsize: 200.0 ysize: 194.0 xinc: 0.02 yinc: 0.02 xnpole: -171.0 ynpole: 45.0

  • AROME (Application of Research to Operational at Meso-Scale) model is a new NWP system built in order to improve the forecast of mesoscale phenomena and extreme weather events (thunderstorms, mountain forecasts, coastal winds, immediate forecasts). It is planned to be used operationally by the end of 2008 over mainland France. With a 2.5 km horizontal grid mesh and a time step of 60s, this model is designed for short range forecasts. It merges research outcomes and operational progress : the physical package used is extracted from the Meso-NH research model and has been interfaced into the Non-Hydrostactic version of the ALADIN software. AROME also has its own mesoscale data assimilation system based on 3DVar with a 3hours RUC (Rapid Update Cycle). Physical parameterizations used in AROME are: -the ICE3 Meso-NH microphysical scheme with 5 prognostic species of condensed water. It contains 3 precipitating species (rain, snow and graupel) and 2 non precipitating ones (ice crystals and cloud droplets) -the Meso-NH 1D turbulence parameterization with Bougeault Lacarrere mixing lengths. -the externalized version of the Meso-NH detailed surface scheme -the operational ECMWF radiation code (called every 15 min). -the KFB (Kein-Fritsch Bechtold) shallow convection scheme is also switched on. We daily performed 30 hours forecasts with Non-Hydrostatic AROME 2.5 km model, starting from 00 TU. We ran with a time step of 60s over a domain of 400x320 points.AROME is coupled every 3 hours with ALADIN-France (ALADFR) 10km operational model. The post-processing in GRIB files is done on a regular LAT-LON Grid with a 0.025 degree resolution on a DPHASE domain (346x288 points), centered at 46.5N, 9.6E. This domain is smaller than the full DPHASE domain, and on the COPS domain (47-50 N, 6-11 E). Grid description: CDOM and DDOM:xinc/yinc:0.025 xnpole/ynpole:0.0 CDOM:xfirst:6.0 yfirst:47.0 xsize:202.0 ysize:122.0 DDOM:xfirst:5.2875 yfirst:42.9125 xsize:346.0 ysize:288.0

  • - preoperational model (planned to become operational in 2008) - configuration: Runge Kutta time integration scheme (dt=20sek); multi layer soil module; no parameterized deep convection; 60 levels; prognostic TKE, rain, snow and graupel - model runs are started at 00UTC 03UTC 09UTC 12UTc and 18UTC. Forecast range is 24h, except 09 and 18 run ranging upt to 30h. To complete the timeseries, dummy text files have been generated for 06UTC, 15UTC, 21UTC. Missing time steps are filled with dummy text files as well. Note: From 12th of July 2007 on, +24h forecasts are produced for 06, 15 and 21 UTC as well. Grid description: CDOM: xfirst: -2.76 yfirst: -0.02 xsize: 174.0 ysize: 141.0 xinc: 0.02 yinc: 0.02 xnpole: -170.0 ynpole: 43.0 DDOM: xfirst: -5.5 yfirst: -3.8 xsize: 500.0 ysize: 330.0 xinc: 0.02 yinc: 0.02 xnpole: -170.0 ynpole: 43.0

  • This experiment contains forecasts from the LMK (COSMO-DE) high resolution model of DWD (2.8km horizontal resoultion and 50 model levels). Model runs are started every 3h at 00, 03, 06, 09, 12, 15, 18 and 21 UTC with a forecast range of +18h. LMK (COSMO-DE) is an operational forecast model of DWD. Therefore, we adapted the output of the model as close as possible to the tigge+ list, but there are some differences; see dataset summaries. For a detailed description of the LMK (COSMO-DE) model, please contact the originator of the data. All datasets for COPS in the database have an output frequency of 15 minutes. If the variables are not provided by LMK (COSMO-DE) with an output frequency of 15 minutes then the hourly output has been linearily interpolated in time. LMK (COSMO-DE) provides only a subset of the TIGGE+ variables with an output frequency of 15 minutes. These are: Total precipitation (all types) (kg/m**2) acc_st 011 002 TPT2 Precipitation: grid-scale only, rain (kg/m**2) acc_st 102 201 SURF Precipitation: grid-scale only, snow (kg/m**2) acc_st 079 002 SURF Precipitation: grid-scale only, graupel (kg/m**2) acc_st 132 201 SURF Precipitation rate: grid-scale only, rain (kg/s/m**2) inst 100 201 SURF Precipitation rate: grid-scale only, snow (kg/s/m**2) inst 100 201 SURF Precipitation rate: grid-scale only, graupel (kg/s/m**2) inst 100 201 SURF Total column water vapour (or precipitable water) (kg/m**2) inst 054 002 SURF Total column cloud water (or cloud water) (kg/m**2) inst 076 002 SURF Total column cloud ice (or cloud ice) (kg/m**2) inst 058 002 SURF W-velocity (m/s) inst 040 002 MUVW Grid descitption: CDOM: xfirst: -2.73 yfirst: -2.927 xsize: 135.0 ysize: 118.0 xinc: 0.025 yinc: 0.025 xnpole: -170.0 ynpole: 40.0 DDOM: xfirst: -5.882 yfirst: -6.685 xsize: 441.0 ysize: 279.0 xinc: 0.025 yinc: 0.025 xnpole: -170.0 ynpole: 40.0

  • lami7 stands for 'Limited Area Model Italy' which is the Italian implementation of COSMO Model, run with a 7 km grid interval. COSMO model in lami7 suite is run operationally twice a day with a 7 km grid interval; it is initialised at 00 and 12 UTC with an own continuous assimilation cycle based on the nudging technique; the boundary conditions are provided by ECMWF IFS model; the integration domain ranges approximately from 0 deg E to 23 deg E and from 33 deg N to 52 deg N and the integration time range is 72 hours. The model is run at Cineca computing centre (http://www.cineca.it) on an IBM Power5 platform and in backup at ARPA-SIM (http://www.arpa.emr.it/sim/) on a Intel X86-64 Linux Cluster. Grid description: If given, the grid increments contained in the grib file have to be ignored since the precision for those parameters in GRIB1 format is not enough to represent the true value. DDOM: xfirst: -5.0 yfirst: -15.5 xsize: 186.0 ysize: 136.0 xinc: 0.0625 yinc: 0.0625 xnpole: 32.5 ynpole: -170.0

  • Model system ALADIN, 18km horizontal resolution, 37 levels in vertical, LOPEZ microphysics etc. Ensemble system with 16 members. 2 runs per day at 00, 12 UTC, Initial perturbation: Downscaling of ECMWF Singular vector perturbation Lateral boundary perturbation: Coupling with the ECMWF EPS system Domain of products: Latitude: 38.53---54.98, 0.15 deg grid space, 110 grids; Longitude: 2.55---31.8, 0.15 deg. grid space, 196 grids Every 3 hours, from 0 to 48 hours forecast. Grid description: quadratic grid, it is the Lambert Projection DDOM: xfirst: 2.55 yfirst: 42.95 xsize: 105.0 ysize: 49.0 xinc: 0.15 yinc: 0.15 xnpole: 0.0 ynpole: 0.0

  • This experiment contains forecasts from the LME (COSMO-EU) model of DWD (7km horizontal resolution, 40 model levels). Model runs are started every 6h at 00, 06, 12 and 18 UTC with a forecast range of +72h. LME (COSMO-EU) is an operational forecast model of DWD. The output is mostly according to the tigge+ list. Descriptions of the differences to TIGGE+ can be found in the summary of the data sets. For a detailed description of the LME (COSMO-EU) model, please contact the originator of the data. Grid description: CDOM: xfirst: -2.73 yfirst: -2.927 xsize: 177.0 ysize: 112.0 xinc: 0.063 yinc: 0.063 xnpole: -170.0 ynpole: 40.0 DDOM: xfirst: -5.882 yfirst: -6.685 xsize: 177.0 ysize: 112.0 xinc: 0.063 yinc: 0.063 xnpole: -170.0 ynpole: 40.0

  • For Map-D-PHASE the Canadian Meterological Centre (CMC) is running the Global Environmental Multiscale (GEM) model in limited-area mode. The model is run once-daily directly from operational GEM meso-global forecast data (grid spacing of 33 km). A pair of domains are used for the project with horizontal grid spacings of 15 km and 2.5 km. This inner (high resolution) grid is tightly centered on the MAP D-PHASE project region and is initialized at 0600 UTC from the CMCGEML run. Boundary conditions for the high resolution domain are updated at 15 minute intervals from the low resolution model output. The forecast timestep is 60 seconds and data is available at 15 minute intervals. No regional analysis or data assimilation cycle is undertaken during this project. All observational data will therefore be ingested only indrectly in the regional setup through the outer grid initialization and hourly boundary updates from the meso-global model. The GEM model is a semi-implicit, semi-Lagrangian, two time-level, non-hydrostatic model that runs in a wide variety of configurations. An updated version (v3.3.0) of the GEM model is being used for the MAP D-PHASE project in preparation for the Vancouver 2010 Olympic Games project. This version takes advantage of recent developments designed to enhance the quality of guidance over regions of steeply-sloping orography, including the addition of a 6-category bulk microphysics scheme and time-varying orography over the initialization period. For more information on -the GEM model dynamics: see Cote et al (1998) [Mon. Wea. Rev.]. -the model physics package: contact Recherche en Prevision Numerique for the related technical document by Mailhot. -the model's microphysics scheme: see Milbrandt and Yau (2007) [Mon. Wea. Rev.]. Grid description: CDOM and DDOM:xinc 0.03 yinc:0.02 xnpole/ynpole:0.0 CDOM:xfirst:6.0 yfirst:47.0 xsize:168.0 ysize:151.0 DDOM:xfirst:2.0 yfirst:43.0 xsize:535.0 ysize:351.0

Barrierefreiheit | Datenschutz | Impressum