Type

 

series

2780 record(s)

 

Provided by

Type of resources

Available actions

Topics

Keywords

Contact for the resource

Update frequencies

From 1 - 10 / 2780
  • A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1995 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1984 and, then, from 1985 to 1994 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html; IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx; HELCOM: Helsinki Commission). The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi:10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was modified in order to comply with BASP (Baltic Sea Action Plan) targets (PhosWaM SWAT case "15"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v04" (see final project report of PhosWaM for details). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

  • 'sstClim' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 6.2a sstClim (6.2a Control SST Climatology) - Version 1: AMIP-style experiment with control run climatological SSTs and sea ice. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.

  • rcp26 is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 4.3 rcp26 (4.3 RCP2.6) - Version 1: Future projection (2006-2100) forced by RCP2.6. RCP2.6 is a representative concentration pathway which approximately results in a radiative forcing of 2.6 W m-2 at year 2100, relative to pre-industrial conditions. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .

  • rcp85 is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 4.2 rcp85 (4.2 RCP8.5) - Version 1: Future projection (2006-2100) forced by RCP8.5. RCP8.5 is a representative concentration pathway which approximately results in a radiative forcing of 8.5 W m-2 at year 2100, relative to pre-industrial conditions. RCPs are time-dependent, consistent projections of emissions and concentrations of radiatively active gases and particles. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .

  • While climate information from General Circulation Models (GCMs) are usually too coarse for climate impact modelers or decision makers from various disciplines (e.g., hydrology, agriculture), Regional Climate Models (RCMs) and Regional Earth System Models (RESMs) provide feasible solutions for downscaling GCM output to finer spatiotemporal scales. However, it is well known that the model performance depends largely on the choice of the physical parameterization schemes, but optimal configurations may vary from region to region. Besides land-surface processes, the most crucial processes to be parameterized in ESMs include radiation (RA), cumulus convection (CU), cloud microphysics (MP), and planetary boundary layer (PBL), partly with complex interactions. Before conducting long-term climate simulations, it is therefore indispensable to identify a suitable combination of physics parameterization schemes for these processes. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product ERA-Interim as lateral boundary conditions, we derived an ensemble of 16 physics parameterization runs for a larger domain in Northern sub-Saharan Africa (NSSA), northwards of the equator, using two different CU-, MP-, PBL-, and RA schemes, respectively, using the Weather Research and Forecasting (WRF) model (Version v3.9) for the period 2006-2010 in a resolution of 0.1 degree horizontal resolution. Conclusions about suitable physical parameterization schemes may vary within the study area. We therefore want to stimulate the development of own performance evaluation studies for climate simulations or subsequent impact studies over specific (sub-)regions in NSSA. For this reason, selected climate surface variables of the physics ensemble (i.e. the 16 experiments from 2006-2010) are provided. For more information about the setup of the experiments, please see: Laux et al., 2021: A high-resolution regional climate model physics ensemble for Northern sub-Saharan Africa. Frontiers in Earth Science (under revision).

  • While climate information from General Circulation Models (GCMs) are usually too coarse for climate impact modelers or decision makers from various disciplines (e.g., hydrology, agriculture), Regional Climate Models (RCMs) and Regional Earth System Models (RESMs) provide feasible solutions for downscaling GCM output to finer spatiotemporal scales. However, it is well known that the model performance depends largely on the choice of the physical parameterization schemes, but optimal configurations may vary from region to region. Besides land-surface processes, the most crucial processes to be parameterized in ESMs include radiation (RA), cumulus convection (CU), cloud microphysics (MP), and planetary boundary layer (PBL), partly with complex interactions. Before conducting long-term climate simulations, it is therefore indispensable to identify a suitable combination of physics parameterization schemes for these processes. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product ERA-Interim as lateral boundary conditions, we derived an ensemble of 16 physics parameterization runs for a larger domain in Northern sub-Saharan Africa (NSSA), northwards of the equator, using two different CU-, MP-, PBL-, and RA schemes, respectively, using the Weather Research and Forecasting (WRF) model (Version v3.9) for the period 2006-2010 in a resolution of 0.1 degree horizontal resolution. Conclusions about suitable physical parameterization schemes may vary within the study area. We therefore want to stimulate the development of own performance evaluation studies for climate simulations or subsequent impact studies over specific (sub-)regions in NSSA. For this reason, selected climate surface variables of the physics ensemble (i.e. the 16 experiments from 2006-2010) are provided. For more information about the setup of the experiments, please see: Laux et al., 2021: A high-resolution regional climate model physics ensemble for Northern sub-Saharan Africa. Frontiers in Earth Science (under revision).

  • The hydrodynamic model TRIM-NP in a barotropic mode is used to simulate the strong storm tide in March 1906 forced by reconstructed weather data by the Deutsche Wetterdienst (DWD) and Helmholtz-Zentrum Geesthacht. From georeferenced historical station data, pressure maps are drawn, digitised, and wind speed calculated from them. The model area covers the region of 20W to 30E and 42N to 65N with a spatial resolution of 12.8x12.8 km for grid 1. At the lateral boundaries of grid 1, the water level is calculated with tide model FES2004. TRIM-NP calculates one way nested with higher resolution the North Sea (with 6.4km, grid2), southern North Sea (with 3.2km, grid3) and the German Bight (with 1.6km, grid4). In this data bank, the datasets are available hourly for grid 2 and grid 4. Please contact the authors for grid 1 and grid 3. The datasets are visualised https://doi.org/10.5446/49529 or https://www.dkrz.de/projects-and-partners/projects/focus/stormtide1906. In additional experiments, the tides at the lateral boundaries are shifted backwards (up to minus six hours) or forward (up to plus six hours) in time to calculate the peak of the storm tide. The atmospheric forcing is not changed. Only the water levels from grid4 of this experiment are stored.

  • This experiment uses 'CMIP5 MPIESM r1i1p1 historical' forcing data for downscaling to 60km resolution by the regional model WRFV3.5.1 for the region of West Africa. 'historical' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). 3.2 historical (3.2 Historical) - Version 1: Simulation of recent past (1850 to 2005). Experiment design:https://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=Taylor_CMIP5_design.pdf . This experiment is divided into several time slices of 11 years. The first year of each time slice is used as a spin-up phase and should not be used in the analysis. All experiments with MPIESM forcing refer to a Gregorian calendar. The 60 km resolution of this experiment is an intermediate step to the 12km downscaling WRF experiment.

  • While climate information from General Circulation Models (GCMs) are usually too coarse for climate impact modelers or decision makers from various disciplines (e.g., hydrology, agriculture), Regional Climate Models (RCMs) and Regional Earth System Models (RESMs) provide feasible solutions for downscaling GCM output to finer spatiotemporal scales. However, it is well known that the model performance depends largely on the choice of the physical parameterization schemes, but optimal configurations may vary from region to region. Besides land-surface processes, the most crucial processes to be parameterized in ESMs include radiation (RA), cumulus convection (CU), cloud microphysics (MP), and planetary boundary layer (PBL), partly with complex interactions. Before conducting long-term climate simulations, it is therefore indispensable to identify a suitable combination of physics parameterization schemes for these processes. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product ERA-Interim as lateral boundary conditions, we derived an ensemble of 16 physics parameterization runs for a larger domain in Northern sub-Saharan Africa (NSSA), northwards of the equator, using two different CU-, MP-, PBL-, and RA schemes, respectively, using the Weather Research and Forecasting (WRF) model (Version v3.9) for the period 2006-2010 in a resolution of 0.1 degree horizontal resolution. Conclusions about suitable physical parameterization schemes may vary within the study area. We therefore want to stimulate the development of own performance evaluation studies for climate simulations or subsequent impact studies over specific (sub-)regions in NSSA. For this reason, selected climate surface variables of the physics ensemble (i.e. the 16 experiments from 2006-2010) are provided. For more information about the setup of the experiments, please see: Laux et al., 2021: A high-resolution regional climate model physics ensemble for Northern sub-Saharan Africa. Frontiers in Earth Science (under revision).

  • RCM forcing data from three realisations of the CMIP5 experiment decadal2005. The decadal2005 experiment covers the years 2006-2035. The members start from different states in late 2005 (1 day apart) of an assimilated historical run (realisation 1).

Barrierefreiheit | Datenschutz | Impressum