From 1 - 10 / 199
  • The RapidEye Earth observation system comprises five satellites equipped with high-resolution optical sensors. Co-funded by the German Federal Government, the fleet of satellites was launched from the Baikonur cosmodrome in Kazakhstan in 2008. RapidEye is now being owned by Planet Labs, Inc. The RapidEye constellation is capable of taking images of the Earth's surface at high repeat rates. Each point on Earth can be imaged at least once per day. With a spatial resolution of 6.5 m the 5-band sensors onboard the RapidEye satellites operate in the visible and near-infrared portions of the electromagnetic spectrum. For more information see http://www.dlr.de/rd/en/desktopdefault.aspx/tabid-2440/3586_read-5336/ or https://www.planet.com/products/planet-imagery/ The RapidEye Science Archive (RESA), which allows Germany-based researchers to apply for free RapidEye imagery, is now being operated by Planet Labs Germany GmbH. For more information see https://resa.planet.com/

  • The "AVHRR compatible Normalized Difference Vegetation Index derived from MERIS data (MERIS_AVHRR_NDVI)" was developed in a co-operative effort of DLR (German Remote Sensing Data Centre, DFD) and Brockmann Consult GmbH (BC) in the frame of the MAPP project (MERIS Application and Regional Products Projects). For the generation of regional specific value added MERIS level-3 products, MERIS full-resolution (FR) data are processed on a regular (daily) basis using ESA standard level-1b and level-2 data as input. The regular reception of MERIS-FR data is realized at DFD ground station in Neustrelitz. The Medium Resolution Imaging MERIS on Board ESA's ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int The Advanced Very High Resolution Radiometer (AVHRR) compatible vegetation index (MERIS_AVHRR_NDVI) derived from data of the MEdium Resolution Imaging Spectrometer (MERIS) is regarded as a continuity index with 300 meter resolution for the well-known Normalized Difference Vegetation Index (NDVI) derived from AVHRR (given in 1km spatial resolution). The NDVI is an important factor describing the biological status of canopies. This product is thus used by scientists for deriving plant and canopy parameters. Consultants use time series of the NDVI for advising farmers with best practice. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides 10-days maps.

  • SWACI is a research project of DLR supported by the State Government of Mecklenburg-Vorpommern. Radio signals, transmitted by modern communication and navigation systems may be heavily disturbed by space weather hazards. Thus, severe temporal and spatial changes of the electron density in the ionosphere may significantly degrade the signal quality of various radio systems which even may lead to a complete loss of the signal. By providing specific space weather information, in particular now- and forecast of the ionospheric state, the accuracy and reliability of impacted communication and navigation systems shall be improved. The total electron content (TEC) is defined as the integral of the electron density along the ray path between satellite and receiver. Thus, TEC provides the number of electrons per square meter. The most frequently used unit is 1TECU = 1x1016 electrons / m2. TEC is derived from dual frequency code and carrier phase measurements provided by Global Navigation Satellite Systems (GNSS). SWACI uses GPS measurements from various European GNSS networks such as the International GNSS Service (IGS), European Reference Frame (EUREF), Norwegian Mapping Authority (NMA), and ascos distributed by the Federal Agency of Cartography and Geodesy (BKG) Frankfurt. The global TEC maps are mainly created by using data provided by the International GNSS Service Real-Time Pilot Project (IGS-RTPP). To generate TEC maps of vertical TEC, the slant measurements have to be transformed to the vertical. In a first approximation the ionospheric range error in GNSS is proportional to TEC. These TEC maps are used to derive latitudinal and zonal gradients, rate of change of TEC (5 min increments), 27 days medians, hourly forecasts of TEC, and corresponding error estimates. Spatial resolution (latitude x longitude): 2 °x 2° (Europe), 2.5° x 5° (globally)

  • The map shows the elevation of the surroundings of the Al Zaatari refugee camp in Jordan. The elevation information is derived from ASTER GDEM 2 data (vertical accuracy +/- 6m). Furthermore basic reference information, digitized on the basis of WorldView-2 satellite data acquired on January 03, 2013, at 08:52:52 UTC and LANDSAT-7 data acquired on December 16, 2012 at 08:07:11 UTC, is depicted. Not all settlements are captured. The results have not been validated in the field. ASTER GDEM 2 data as well as a hillshade derived from this data is used as backdrop. Please note, that information on elevation derived from ASTER data does not apply for the refugee camp area. ASTER data was acquired before 2011 and the elevation might have changed due to construction works. The products elaborated for this Rapid Mapping Activity are realised to the best of our ability, within a very short time frame, optimising the material available. All geographic information has limitations due to the scale, resolution, date and interpretation of the original source materials. No liability concerning the content or the use thereof is assumed by the producer. The ZKI crisis maps are constantly updated. Please make sure to visit http://www.zki.dlr.de for the latest version of this product.

  • Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. IRS LISS-III data are well suited for agricultural and forestry monitoring tasks. Because of their simultaneous acquisition with IRS PAN data and the availability of a synthetic blue band, LISS-III data are ideal for colouring IRS PAN products.

  • This product shows Snow Cover Duration (SCD) for the whole hydrological year (Sept. 1st of a given year until Aug. 31st of the next year). Information about extent, beginning, duration and melt of snow cover are important for climate research, hydrological applications, flood prediction and weather forecast. Climate change is influencing the characteristics and duration of snow cover, affecting landscape, hydrology, flora, fauna, and humans in equal measure. Therefore, precise information about the different snow parameters and their development over time are particularly important for various research fields. The “Global SnowPack” is a dataset containing information about snow cover parameters on a global scale. Overall, early season, and late season snow cover duration are included and allow detailed insights in the characteristics of this most relevant part of Earth’s cryosphere. The parameters are being derived from daily, operational MODIS snow cover products for every year since 2000. The negative effects of polar darkness and cloud coverage are compensated by applying several processing steps. Thereby, a unique global dataset can be provided that is characterized by its high accuracy, a spatial resolution of 500 meter and continuous future enhancements. For more information please also refer to: Dietz, A. J., C. Kuenzer, and S. Dech. 2015: Global SnowPack – “A new set of snow cover parameters to study status and dynamics of the planetary snow cover extent.“ accepted for publication in Remote Sensing Letters. Dietz, A. J., C. Conrad, C. Kuenzer, G. Gesell, and S. Dech. 2014. “Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data.” Remote Sensing 6 (12): 12752–75. doi:10.3390/rs61212752. Dietz, A. J., C. Kuenzer, and C. Conrad. 2013. “Snow-Cover Variability in Central Asia between 2000 and 2011 Derived from Improved MODIS Daily Snow-Cover Products.” International Journal of Remote Sensing 34 (11): 3879–3902. Dietz, A. J., C. Wohner, and C. Kuenzer. 2012. “European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products.” Remote Sensing 4 (8): 2432–54. doi:10.3390/rs4082432.

  • Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. \\n\\nIRS LISS-III data are well suited for agricultural and forestry monitoring tasks. Because of their simultaneous acquisition with IRS PAN data and the availability of a synthetic blue band, LISS-III data are ideal for colouring IRS PAN products.

  • Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The satellite has two panchromatic cameras that were especially designed for in flight stereo viewing.

  • SWACI is a research project of DLR supported by the State Government of Mecklenburg-Vorpommern. Radio signals, transmitted by modern communication and navigation systems may be heavily disturbed by space weather hazards. Thus, severe temporal and spatial changes of the electron density in the ionosphere may significantly degrade the signal quality of various radio systems which even may lead to a complete loss of the signal. By providing specific space weather information, in particular now- and forecast of the ionospheric state, the accuracy and reliability of impacted communication and navigation systems shall be improved. The total electron content (TEC) is defined as the integral of the electron density along the ray path between satellite and receiver. Thus, TEC provides the number of electrons per square meter. The most frequently used unit is 1TECU = 1x1016 electrons / m2. TEC is derived from dual frequency code and carrier phase measurements provided by Global Navigation Satellite Systems (GNSS). SWACI uses GPS measurements from various European GNSS networks such as the International GNSS Service (IGS), European Reference Frame (EUREF), Norwegian Mapping Authority (NMA), and ascos distributed by the Federal Agency of Cartography and Geodesy (BKG) Frankfurt. The global TEC maps are mainly created by using data provided by the International GNSS Service Real-Time Pilot Project (IGS-RTPP). To generate TEC maps of vertical TEC, the slant measurements have to be transformed to the vertical. In a first approximation the ionospheric range error in GNSS is proportional to TEC. These TEC maps are used to derive latitudinal and zonal gradients, rate of change of TEC (5 min increments), 27 days medians, hourly forecasts of TEC, and corresponding error estimates. Spatial resolution (latitude x longitude): 2 °x 2° (Europe), 2.5° x 5° (globally)

  • SWACI is a research project of DLR supported by the State Government of Mecklenburg-Vorpommern. Radio signals, transmitted by modern communication and navigation systems may be heavily disturbed by space weather hazards. Thus, severe temporal and spatial changes of the electron density in the ionosphere may significantly degrade the signal quality of various radio systems which even may lead to a complete loss of the signal. By providing specific space weather information, in particular now- and forecast of the ionospheric state, the accuracy and reliability of impacted communication and navigation systems shall be improved. NmF2 Maps and 3D electron density distribution: According to the pioneer work of Sir E. Appleton the vertical structure of the terrestrial ionosphere may be devided into different layers (D, E, F1, F2) with different physical characteristics. The layers are primarily characterized by its height and peak electron density. Typical plasma frequencies /electron densities are in the order of 10 MHz /1012 electrons / m3. Shown are here global maps of the peak electron density of the F2 layer and related electron density maps at selected altitudes. The figures provide a first estimation of the three dimensional electron density distributions around the globe. For more details see http://swaciweb.dlr.de/data-and-products/public/nmf2/?L=1.

Datenschutz | Impressum