Topic

 

imageryBaseMapsEarthCover

45150 record(s)

 

Provided by

Type of resources

Available actions

Topics

Keywords

Contact for the resource

Update frequencies

From 1 - 10 / 45150
  • Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. With 5 m resolution and products covering areas up to 70 km x 70 km IRS PAN data provide a cost effective solution for mapping tasks up to 1:25'000 scale.

  • Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. \\n\\nIRS LISS-III data are well suited for agricultural and forestry monitoring tasks. Because of their simultaneous acquisition with IRS PAN data and the availability of a synthetic blue band, LISS-III data are ideal for colouring IRS PAN products.

  • The objective of the pan-European project CORINE Land Cover (CLC) is the provision of a unique and comparable data set of land cover for Europe and the delivery of regular updates to register also the land cover and land use changes over time. It is part of the European Union programme CORINE (Coordination of Information on the Environment). The mapping of the land cover and land use was performed on the basis of satellite remote sensing images. The first CLC data base CLC1990, which was finalized in the 1990s, consistently provided land use information comprising 44 classes, out of which 37 classes are relevant in Germany. The first two updates for Europe were based on the reference years 2000 and 2006. For Germany, DLR-DFD was responsible for the creation of CLC2000 and CLC2006 on behalf of the Federal Environment Agency. In addition to the updated land cover, change datasets were also parts of the project. For deriving a meaningful CLC2000 change product, it became necessary to re-interprete parts of the satellite data of 1990 and to create a revised product, called CLC1990 (rev). Further details: http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-11882/20871_read-48836/

  • The hyperspectral instrument DESIS (DLR Earth Sensing Imaging Spectrometer) is one of four possible payloads of MUSES (Multi-User System for Earth Sensing), which is mounted on the International Space Station (ISS). DLR developed and delivered a Visual/Near-Infrared Imaging Spectrometer to Teledyne Brown Engineering, which was responsible for integrating the instrument. Teledyne Brown designed and constructed, integrated and tested the platform before delivered to NASA. Teledyne Brown collaborates with DLR in several areas, including basic and applied research for use of data. DESIS is operated in the wavelength range from visible through the near infrared and enables precise data acquisition from Earth's surface for applications including fire-detection, change detection, maritime domain awareness, and atmospheric research. Three product types can be ordered, which are Level 1B (systematic and radiometric corrected), Level 1C (geometrically corrected) and Level 2A (atmospherically corrected). The spatial resolution is about 30m on ground. DESIS is sensitive between 400nm and 1000nm with a spectral resolution of about 3.3nm. DESIS data are delivered in tiles of about 30x30km. For more information concerning DESIS the reader is referred to https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-13614/

  • The objective of the pan-European project CORINE Land Cover (CLC) is the provision of a unique and comparable data set of land cover for Europe and the delivery of regular updates to register also the land cover and land use changes over time. It is part of the European Union programme CORINE (Coordination of Information on the Environment). The mapping of the land cover and land use was performed on the basis of satellite remote sensing images. The first CLC data base CLC1990, which was finalized in the 1990s, consistently provided land use information comprising 44 classes, out of which 37 classes are relevant in Germany. The first two updates for Europe were based on the reference years 2000 and 2006. For Germany, DLR-DFD was responsible for the creation of CLC2000 and CLC2006 on behalf of the Federal Environment Agency. In addition to the updated land cover, change datasets were also parts of the project. For deriving a meaningful CLC2000 change product, it became necessary to re-interprete parts of the satellite data of 1990 and to create a revised product, called CLC1990 (rev). Further details: http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-11882/20871_read-48836/

  • This collection contains Sentinel-3 Level-1 products recorded by the OLCI (Ocean and Land Colour) instrument. The data consist of top-of-atmosphere radiances, ortho-geolocated and re-sampled onto an along-track and across-track grid. The Sentinel-3 mission, jointly operated by ESA and EUMETSAT, is designed as a constellation of two identical polar orbiting satellites, separated by 180°, for the provision of long-term operational marine and land monitoring services. Sensor: OLCI (Ocean Land Colour Instrument) Revisit time: <2 days at the equator Launch date: 16 February 2016 Archiving start date: 29 February 2016 Mission Status: ongoing Terms and conditions for the use of Sentinel data https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/TC_Sentinel_Data_31072014.pdf Sentinel-3 Mission Overview https://sentinel.esa.int/web/sentinel/missions/sentinel-3 Sentinel-3 OLCI Level-1 Products Overview https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1-algorithms-products Spatial resolution of Sentinel-3 Level-1B data: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-olci/resolutions/spatial Radiometric resolution and band numbering: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-olci/resolutions/radiometric File format of measurement data: netCDF Suggested software: ESA SNAP/Sentinel Toolbox (http://step.esa.int/main/download/) Sentinel-3 OLCI coverage: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/coverage

  • This collection contains radar image products of the German national TerraSAR-X mission acquired in High Resolution Spotlight mode. High Resolution Spotlight imaging allows for a spatial resolution of up to 1 m at a scene size of 10 km (across swath) x 5 km (in orbit direction). TerraSAR-X is a sun-synchronous polar-orbiting, all-weather, day-and-night X-band radar earth observation mission realized in the frame of a public-private partnership between the German Aerospace Center (DLR) and Airbus Defence and Space. For more information concerning the TerraSAR-X mission, the reader is referred to: http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/

  • Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The revisit capability of only 5 days and the products coverage size of 370 km x 370 km make AWiFS products a valuable source for application fields such forestry and environmental monitoring

  • This collection contains radar image products of the German national TerraSAR-X mission acquired in StripMap mode. StripMap imaging allows for a spatial resolution of up to 3 m at a scene size of 30 km (across swath) x 50-1650 km (in orbit direction). TerraSAR-X is a sun-synchronous polar-orbiting, all-weather, day-and-night X-band radar earth observation mission realized in the frame of a public-private partnership between the German Aerospace Center (DLR) and Airbus Defence and Space. For more information concerning the TerraSAR-X mission, the reader is referred to: http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/

  • This collection contains Sentinel-2 Level-1C products which consist of top-of-atmosphere reflectances in cartographic geometry. Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission developed by ESA as part of the Copernicus Programme, supporting the Copernicus Land Monitoring services, including the monitoring of vegetation, soil and water cover, as well as the observation of inland waterways and coastal areas. The full Sentinel-2 mission comprises two polar-orbiting satellites in the same orbit, phased at 180° to each other. Sensor: MSI (Multispectral Instrument) Repeat rate: 5 days (with two satellites) Launch dates: 23 June 2015 (Sentinel-2A), 07 March 2017 (Sentinel-2B) Archiving start date: 27 June 2015 Mission Status: ongoing Terms and conditions for the use of Sentinel data https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/TC_Sentinel_Data_31072014.pdf Sentinel-2 Mission Overview https://sentinel.esa.int/web/sentinel/missions/sentinel-2 Sentinel-2 Level-1C Processing Overview https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c-processing Sentinel-2 Level-1C spatial resolution https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial Sentinel-2 Level-1C radiometric resolution and band numbering https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric File format of measurement data: JPEG2000 Suggested software: ESA SNAP/Sentinel Toolbox (http://step.esa.int/main/download/) Sentinel-2 acquisition plans: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/acquisition-plans

Datenschutz | Impressum