Topic

 

imageryBaseMapsEarthCover

45228 record(s)

 

Provided by

Type of resources

Available actions

Topics

Keywords

Contact for the resource

Update frequencies

From 1 - 10 / 45228
  • This collection contains radar image products of the German national TerraSAR-X mission acquired in Spotlight mode. Spotlight imaging allows for a spatial resolution of up to 2 m at a scene size of 10 km (across swath) x 10 km (in orbit direction). TerraSAR-X is a sun-synchronous polar-orbiting, all-weather, day-and-night X-band radar earth observation mission realized in the frame of a public-private partnership between the German Aerospace Center (DLR) and Airbus Defence and Space. For more information concerning the TerraSAR-X mission, the reader is referred to: http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/

  • This collection contains Sentinel-2 Level-1C products which consist of top-of-atmosphere reflectances in cartographic geometry. Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission developed by ESA as part of the Copernicus Programme, supporting the Copernicus Land Monitoring services, including the monitoring of vegetation, soil and water cover, as well as the observation of inland waterways and coastal areas. The full Sentinel-2 mission comprises two polar-orbiting satellites in the same orbit, phased at 180° to each other. Sensor: MSI (Multispectral Instrument) Repeat rate: 5 days (with two satellites) Launch dates: 23 June 2015 (Sentinel-2A), 07 March 2017 (Sentinel-2B) Archiving start date: 27 June 2015 Mission Status: ongoing Terms and conditions for the use of Sentinel data https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/TC_Sentinel_Data_31072014.pdf Sentinel-2 Mission Overview https://sentinel.esa.int/web/sentinel/missions/sentinel-2 Sentinel-2 Level-1C Processing Overview https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c-processing Sentinel-2 Level-1C spatial resolution https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial Sentinel-2 Level-1C radiometric resolution and band numbering https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric File format of measurement data: JPEG2000 Suggested software: ESA SNAP/Sentinel Toolbox (http://step.esa.int/main/download/) Sentinel-2 acquisition plans: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/acquisition-plans

  • This collection contains Sentinel-3 Level-1 products recorded by the OLCI (Ocean and Land Colour) instrument. The data consist of top-of-atmosphere radiances, ortho-geolocated and re-sampled onto an along-track and across-track grid. The Sentinel-3 mission, jointly operated by ESA and EUMETSAT, is designed as a constellation of two identical polar orbiting satellites, separated by 180°, for the provision of long-term operational marine and land monitoring services. Sensor: OLCI (Ocean Land Colour Instrument) Revisit time: <2 days at the equator Launch date: 16 February 2016 Archiving start date: 29 February 2016 Mission Status: ongoing Terms and conditions for the use of Sentinel data https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/TC_Sentinel_Data_31072014.pdf Sentinel-3 Mission Overview https://sentinel.esa.int/web/sentinel/missions/sentinel-3 Sentinel-3 OLCI Level-1 Products Overview https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1-algorithms-products Spatial resolution of Sentinel-3 Level-1B data: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-olci/resolutions/spatial Radiometric resolution and band numbering: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-olci/resolutions/radiometric File format of measurement data: netCDF Suggested software: ESA SNAP/Sentinel Toolbox (http://step.esa.int/main/download/) Sentinel-3 OLCI coverage: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/coverage

  • This collection contains Sentinel-1 Level-1 Single Look Complex (SLC) products which consist of focused SAR data that are geo-referenced using orbit and attitude data from the satellite, and provided in slant-range geometry. Sentinel-1 is a polar-orbiting, all-weather, day-and-night C-band radar imaging mission funded by the European Union and carried out by the ESA within the Copernicus Programme, consisting of a constellation of two satellites. Sensor: C-SAR (Synthetic Aperture Radar) Repeat rate: 12 days (1 satellite), 6 days (2 satellites) Launch date: 03 April 2014 Archiving start date: 12 April 2014 Mission Status: ongoing Terms and conditions for the use of Sentinel data https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/TC_Sentinel_Data_31072014.pdf Sentinel-1 Mission Overview https://sentinel.esa.int/web/sentinel/missions/sentinel-1 Sentinel-1 Level-1 SLC Products Overview https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/single-look-complex Spatial resolution of Sentinel-1 Level-1 SLC data https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-single-look-complex File format of measurement data: GeoTIFF Suggested software: ESA SNAP/Sentinel Toolbox (http://step.esa.int/main/download/) Sentinel-1 acquisition plans: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario/acquisition-segments

  • MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment (from http://modis.gsfc.nasa.gov/). On January 16, 2001 the antenna was installed on the roof of the DLR German Remote Sensing Data Center building in Oberpfaffenhofen and put into operation for MODIS reception (see http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-7251/12237_read-29022/ for more details). This mosaic has been generated from TERRA and AQUA products between 30 Sept. to 03 Oct. 2011

  • This collection contains TerraSAR-X Level 1b data acquired over the pre-defined Geohazard Supersites and a number of CEOS projects regions. The collection comprises mainly complex (SSC) with a number of detected (MGD) products. TerraSAR-X data can be ordered by a Principal Investigator (PI) of a respective Supersite region under the terms of a TerraSAR-X Science proposal accepted by DLR. Data is available for download by the Geohazard scientific community under the terms of the user license. Supersites are single sites or extended areas of high priority to the Geohazards community in which active single or multiple geological hazards pose a threat to human population and/or critical facilities. The Supersites initiative provides access to spaceborne and in-situ geophysical data of selected sites prone to earthquake, volcano or other hazards. For further information see: http://ceos.org/ourwork/workinggroups/disasters/gsnl/ Overview of permament Supersites: http://geo-gsnl.org/supersites/permanent-supersites/

  • Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. With 5 m resolution and products covering areas up to 23.5 km x 23.5 km IRS LISS-IV multispectral data provide a cost effective solution for mapping tasks up to 1:25'000 scale.

  • This product shows Snow Cover Duration Late Season (SCDLS). SCDLS represents the SCD between between January 16th and August 31st of a given hydrological year. Information about extent, beginning, duration and melt of snow cover are important for climate research, hydrological applications, flood prediction and weather forecast. Climate change is influencing the characteristics and duration of snow cover, affecting landscape, hydrology, flora, fauna, and humans in equal measure. Therefore, precise information about the different snow parameters and their development over time are particularly important for various research fields. The “Global SnowPack” is a dataset containing information about snow cover parameters on a global scale. Overall, early season, and late season snow cover duration are included and allow detailed insights in the characteristics of this most relevant part of Earth’s cryosphere. The parameters are being derived from daily, operational MODIS snow cover products for every year since 2000. The negative effects of polar darkness and cloud coverage are compensated by applying several processing steps. Thereby, a unique global dataset can be provided that is characterized by its high accuracy, a spatial resolution of 500 meter and continuous future enhancements. For more information please also refer to: Dietz, A. J., C. Kuenzer, and S. Dech. 2015: Global SnowPack – “A new set of snow cover parameters to study status and dynamics of the planetary snow cover extent.“ accepted for publication in Remote Sensing Letters. Dietz, A. J., C. Conrad, C. Kuenzer, G. Gesell, and S. Dech. 2014. “Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data.” Remote Sensing 6 (12): 12752–75. doi:10.3390/rs61212752. Dietz, A. J., C. Kuenzer, and C. Conrad. 2013. “Snow-Cover Variability in Central Asia between 2000 and 2011 Derived from Improved MODIS Daily Snow-Cover Products.” International Journal of Remote Sensing 34 (11): 3879–3902. Dietz, A. J., C. Wohner, and C. Kuenzer. 2012. “European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products.” Remote Sensing 4 (8): 2432–54. doi:10.3390/rs4082432.

  • Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The revisit capability of only 5 days and the products coverage size of 370 km x 370 km make AWiFS products a valuable source for application fields such forestry and environmental monitoring

  • Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations.

Datenschutz | Impressum