Type

 

service-view

147992 record(s)

 

Provided by

Type of resources

Available actions

Keywords

Contact for the resource

Update frequencies

Service types

From 1 - 10 / 147992
  • The basis of the Numerical Ocean Wave Prediction of the Deutscher Wetterdienst (DWD) is a 3rd generation spectral wave model (3G-WAveModel). Spectral models describe the sea state in terms of the 2-dimensional distribution of wave energy by frequency (or period or wave number) and propagation direction. In the current version, a resolution of 36 directions and 30 frequencies (wave periods between 1.5 and 24 seconds) is used. In the numerical model, the temporal evolution of the wave energy spectrum is calculated at a multi-tude of points of a grid stretched over the sea surface. The wave energy changes through the following physical processes: • Wave growth due to the downward momentum flux from the wind field • Wave propagation (advection, refraction) • Redistribution of energy between wavenumbers due to nonlinear interactions • Dissipation (internal friction and wave breaking) Similar to the chain of atmospheric models (ICON, ICON-EU and ICON-D2), the wave prediction system serves more than one forecast areas: the global model GWAM, the European model EWAM and the high-resolution coastal model CWAM. In the model, wave growth is forced by analyzed and predicted 10m winds of the atmospheric models.

  • The basis of the Numerical Ocean Wave Prediction of the Deutscher Wetterdienst (DWD) is a 3rd generation spectral wave model (3G-WAveModel). Spectral models describe the sea state in terms of the 2-dimensional distribution of wave energy by frequency (or period or wave number) and propagation direction. In the current version, a resolution of 36 directions and 30 frequencies (wave periods between 1.5 and 24 seconds) is used. In the numerical model, the temporal evolution of the wave energy spectrum is calculated at a multi-tude of points of a grid stretched over the sea surface. The wave energy changes through the following physical processes: • Wave growth due to the downward momentum flux from the wind field • Wave propagation (advection, refraction) • Redistribution of energy between wavenumbers due to nonlinear interactions • Dissipation (internal friction and wave breaking) Similar to the chain of atmospheric models (ICON, ICON-EU and ICON-D2), the wave prediction system serves more than one forecast areas: the global model GWAM, the European model EWAM and the high-resolution coastal model CWAM. In the model, wave growth is forced by analyzed and predicted 10m winds of the atmospheric models.

  • INSPIRE theme Maritime Units. These are condensed coordinates of the sea border maps 2920 (North Sea) and 2921 (Baltic Sea). They are (interpolated) coordinates compressed to geodetic lines. The distance between the nodes on the geodetic lines connecting the defined border points is less than or equal to 100 m. The sea borders of Germany were proclaimed in the coordinate system European Datum 1950 (ED50), which is no longer used today. The basis for this determination is in particular the promulgation of the proclamation of the Federal Government on the expansion of the German territorial sea of 19 October 1994 (Federal Law Gazette I p. 3428) and the proclamation of the Federal Republic of Germany on the establishment of an exclusive economic zone of 25 November 1994 (Federal Law Gazette II p. 3769), which are decisive with regard to the delimitation of the German territorial sea and the German exclusive economic zone. In order to make better use of these boundaries in today's geoinformation systems and to avoid conversion errors, the BSH has derived the present utility coordinates in WGS 84. In this respect they are not official maritime borders of Germany.

  • Web Map Service (WMS) of the map Groups of soil parent material in Germany 1:5,000,000. The presented map at scale 1:5,000,000 shows the distribution of 15 soil parent material groups in Germany with polygons of at least 64 square kilometers. Parent material is the rock, from which soil is formed. It was derived from the landuse use stratified soil map of Germany at scale 1:1,000,000. The version 3.0 of the map is based on the Digital Landscape Model 1:1,000,000 (DLM1000) of the Federal Agency for Cartography and Geodesy.

  • The data set includes meta data on seismic that are affected by the Geological Data Act and are located in the exclusive economic zone of Germany.

  • In addition to substances that serve as nutrients for the plants, there are also pollutants in the soil which in higher concentrations can impair the growth of plants and animals. Some substances (e.g., nickel) are essential in low concentrations but in higher concentrations they are toxic. The human being mostly is responsible for excessively high pollutant concentrations; However, there are naturally also increased levels of pollutants, which are mostly derived from the parent material. Background values describe the typical natural concentrations of these substances in our soils. The storage of pollutants and their possible degradation in the soil prevent the transfer of the pollutants into the groundwater. The theme maps for the substances in soils of Germany are based on the non-and landuse stratified soil map of Germany 1: 1.000.000 (BUEK1000, BUEK1000N) and data sets from the FISBo laboratory and profile database and 175 data sets from literature.

  • The water penetrating the soil is of utmost importance for the soil as well as for the environment and for humans. Soils store water and they can also make it available to the plants in a time-delayed manner. How much water the different soils can deliver depends on the soil properties. Part of the precipitation leaves the root zone as percolating water and contributes to groundwater recharge. With the water, nutrients and pollutants are transported in the soil. The theme maps of soil water balance in Germany are based on the landuse stratified soil map of Germany 1:1,000,000 (BUEK1000N), the Digital Elevation Model DGM50 of the German Federal Agency for Cartography and Geodesy (BKG), climatic information of the German Meteorological Service (DWD) for the period 1961-1990 as well as on land use data from the data set CORINE Landcover 2006 (UBA).

  • The 1:5 Million International Geological Map of Europe and Adjacent Areas shows the pre-Quaternary geology of Europe onshore and offshore. In addition to the geology attributed by age, petrography and genesis, also magnetic anomalies, tectonic structures, metamorphism and – in the offshore areas – information about the continental/oceanic crust and the continental margin, are shown. The map was developed by BGR under the umbrella of the Commission of the Geological Map of the World (CGMW) and in cooperation with geological surveys organisations of 48 countries and more than 20 research institutes. For detailed information about the 'IGME 5000: More than just a map – A multinational GIS Project' please visit the IGME website. Corresponding to the INSPIRE-directive, this dataset comprises the German part of the map.

  • The map of the relative binding strength of isoproturon in topsoils (0-30 cm) gives an overview of the sorption of this pesticide in the soils of Germany. A high binding strength of isoproturon can reduce the harmful impact on the environment by a decreased mobility. The decomposition of isoproturon in soils was not taken into account during generation of the map. The basis for calculation of the binding strength was the soil map 1:1,000,000 (BUEK1000) as well as linking rules and tabular values of isoproturon binding from Mueller & Waldeck (2011) and Rexilius & Blume (2004). However, the rank of isoproturon binding by clay was recalculated based 175 datasets of 18 publications (shift from rank 5 to rank 1). The binding strength of isoproturon depends on the content of organic matter and the soil texture (proxy for the content of clay minerals and sesquioxides) in this evaluation.

  • The map of the field capacity of soils in Germany gives an overview of the amount of water which can be stored in a soil (depth 1 m). The water storage capacity is a key function of soils. The field capacity was derived from the landuse stratified soil map of Germany at scale 1:1,000,000. The method is published in the Bodenkundliche Kartieranleitung KA4 (1994) and in the documentation of Ad-hoc-AG Boden (representing the soil experts of the geological services of the German federal states). The land use information is derived from the CORINE Land Cover data set (2006).

Barrierefreiheit | Datenschutz | Impressum