From 1 - 10 / 31
  • AROME (Application of Research to Operational at Meso-Scale) model is a new NWP system built in order to improve the forecast of mesoscale phenomena and extreme weather events (thunderstorms, mountain forecasts, coastal winds, immediate forecasts). It is planned to be used operationally by the end of 2008 over mainland France. With a 2.5 km horizontal grid mesh and a time step of 60s, this model is designed for short range forecasts. It merges research outcomes and operational progress : the physical package used is extracted from the Meso-NH research model and has been interfaced into the Non-Hydrostactic version of the ALADIN software. AROME also has its own mesoscale data assimilation system based on 3DVar with a 3hours RUC (Rapid Update Cycle). Physical parameterizations used in AROME are: -the ICE3 Meso-NH microphysical scheme with 5 prognostic species of condensed water. It contains 3 precipitating species (rain, snow and graupel) and 2 non precipitating ones (ice crystals and cloud droplets) -the Meso-NH 1D turbulence parameterization with Bougeault Lacarrere mixing lengths. -the externalized version of the Meso-NH detailed surface scheme -the operational ECMWF radiation code (called every 15 min). -the KFB (Kein-Fritsch Bechtold) shallow convection scheme is also switched on. We daily performed 30 hours forecasts with Non-Hydrostatic AROME 2.5 km model, starting from 00 TU. We ran with a time step of 60s over a domain of 400x320 points.AROME is coupled every 3 hours with ALADIN-France (ALADFR) 10km operational model. The post-processing in GRIB files is done on a regular LAT-LON Grid with a 0.025 degree resolution on a DPHASE domain (346x288 points), centered at 46.5N, 9.6E. This domain is smaller than the full DPHASE domain, and on the COPS domain (47-50 N, 6-11 E). Grid description: CDOM and DDOM:xinc/yinc:0.025 xnpole/ynpole:0.0 CDOM:xfirst:6.0 yfirst:47.0 xsize:202.0 ysize:122.0 DDOM:xfirst:5.2875 yfirst:42.9125 xsize:346.0 ysize:288.0

  • ALADIN is the operational model at Meteo-France. The horizontal resolution is 9.5km, the time step : 415s with a Semi-lagrangian scheme. There are 46 vertical levels with 15 levels below 3000m. The domain of the integration is : (-11.84W, 33.14E) (25N,56.95N) Physical parameterization: - the micro-physics scheme use 4 prognostic variables: liquid and ice cloud water, rain and snow. - the convection scheme is based on Bougeault (1985) with a donwdraft parameterization. - the operational ECMWF radiation code which is called every 60 minutes. - the burbulence is based on Louis's function with an interactive mixing length. ALADIN is coupled with ARPEGE every 3 hours and has its own assimilation system based on 3DVAR. The post-processing in GRIB files is done on a regular LAT-LON Grid with a 0.1 deg resolution on the DPHASE domain. ALADIN-FRANCE daily performs 54h forecasts starting at 0TU, 6TU, 12TU, 18TU (only the 0UTC forecast until 30h is sent) Grid description: DDOM: xfirst: 2.0 yfirst: 43.0 xsize: 161.0 ysize: 71.0 xinc: 0.1 yinc: 0.1 xnpole: 0.0 ynpole: 0.0

  • rcp26 is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 4.3 rcp26 (4.3 RCP2.6) - Version 1: Future projection (2006-2100) forced by RCP2.6. RCP2.6 is a representative concentration pathway which approximately results in a radiative forcing of 2.6 W m-2 at year 2100, relative to pre-industrial conditions. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .

  • midHolocene is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. midHolocene (3.4 mid-Holocene) - Version 2: Consistent with PMIP (Paleo Model Intercomparison Project) specifications. Impose Mid-Holocene (6 kyrs ago) conditions including Orbital parameters and Atmospheric concentrations of well-mixed greenhouse gasses. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .

  • 'esmFdbk1' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 5.5-1 esmFdbk1 (5.5-1 ESM feedback 1) - Version 1: Carbon cycle sees piControl CO2 concentration, but radiation sees 1% per year rise. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.

  • 'amip4xco2' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 6.5 amip4xco2 (6.5 4xCO2 AMIP) - Version 1: Identical to expt. 6.2b, but with AMIP SSTs prescribed as in expt. 3.3 (which is the control for this run). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.

  • "aqua4k" is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 6.7c aqua4k (6.7c aqua planet plus 4K anomaly) - Version 1: Consistent with CFMIP requirements, add a uniform +4K to the zonally uniform SSTs of expt. 6.7a (which is the control for this run). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.

  • lgm is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. lgm (3.5 Last glacial maximum) - Version 2: Consistent with PMIP (Paleo Model Intercomparison Project) requirements. Impose Last Glacial Maximum (21 kyrs ago) conditions including ice sheets and atmospheric concentrations of well-mixed greenhouse gasses. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .

  • 'amip4K' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 6.8 amip4K (6.8 AMIP plus 4K anomaly) - Version 1: Consistent with CFMIP requirements, add a uniform +4 K SST to the AMIP SSTs of expt. 3.3 (which is the "control" for this run). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .

  • 'historical' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 3.2 historical (3.2 Historical) - Version 1: Simulation of recent past (1850 to 2005). Impose changing conditions (consistent with observations). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.

Datenschutz | Impressum