Type

 

model

21 record(s)

 

Provided by

Type of resources

Update frequencies

From 1 - 10 / 21
  • Räumlich verteiltes Modell zur Erosionsrisikobewertung auf europäischer Skala Das Modell basiert auf einem einfachen, konservativen Erosionsmodell, das in verschiedene Komponenten in Bezug auf Klima, Vegetation, Bodenfaktoren und Topographie zerlegt ist. Räumliche Auflösung 1km für ganz Europa, kleinräumigere Auflösung (250m) möglich. Schwerpunkt des Modells liegt auf der Vorhersage von Hangerosion und der Verteilung von Erosionsprodukten an der Basis des Hangs. Die dauerhaften hydrologischen Verhältnisse und Bodenbedeckungsgegebenheiten werden genutzt, um den Grenzwert vom täglichen Niederschlag zu schätzen, ab dem Abfluss und Erosion eintreten. Der Sedimenttransport wird als Produkt aus Bodenerosivität und einer Potenzfunktion von Abfluss und Abflussgradient errechnet. Die Erosivität hängt in erster Linie von den Bodeneigenschaften ab, wird aber auch in Hinblick auf die dauerhafte Landbedeckung bewertet.

  • Konzeptionelles, konzentiertes Modell zur Abflusssimulation. Das Modell ist untergliedert in ein Produktions- und ein Transfermodul. Das Produktionsmodul besteht aus einer Interzeptionsfunktion, der Ermittlung der tatsächlichen Evapotranspiration basierend auf dem Bodenfeuchtespeicher sowie einer Infiltrierfunktion. Transfermodul beinhaltet eine direkte Abflusskomponente, ein lineares Leck vom Bodenfeuchtespeicher, einen linearen Leistungsspeicher gespeist aus dem SMA-Speicher und einer Abflussganglinie. Ein Grad/Tag-Schneeschmelzemodul wird in von Schnee beeinflussten Einzugsgebieten angewendet. Modellinput sind Tageszeitreihen von potenzieller Evapotranspiration und Niederschlag im Einzugsgebiet, sowie Tageszeitreihen der Temperatur zur Schneeschmelze. Als Modelloutput wird der tägliche Abfluss generiert. Zeitliche Einheit in Tagen.

  • Konzeptionelles, konzentiertes Modell zur Abflusssimulation. Das Modell ist untergliedert in ein Produktions- und ein Transfermodul. Das Produktionsmodul besteht aus einem Interzeptionsspeicher, einem nicht-linearen Bodenfeuchtespeicher, um denn bereinigten Niederschlag in zwei Komponenten aufzuspalten, sowie aus einer Funktion zzur Ermittlung der tatsächlichen Evapotranspiration aus dem Bodenfeuchtespeicher. Das Transfermodul beinhaltet eine zwei Abflusskomponenten sowie eine unverfälschte Zeitverzögerung. Ein Grad/Tag-Schneeschmelzemodul wird in von Schnee beeinflussten Einzugsgebieten angewendet. Modellinput sind Tageszeitreihen von potenzieller Evapotranspiration und Niederschlag im Einzugsgebiet, sowie Tageszeitreihen der Temperatur zur Schneeschmelze. Als Modelloutput wird der tägliche Abfluss generiert. Zeitliche Einheit in Tagen.

  • Für die direkte Umrechnung zwischen GPS-Höhen und Gebrauchshöhen aus Nivellements können Geoide bzw. Quasigeoide verwendet werden. Für das Gebiet der Bundesrepublik Deutschland wurde ein kombiniertes satellitengeodätisch-nivellitisch-gravimetrisches Quasigeoid abgeleitet, das eine Transformation zwischen GPS-Höhen im ETRS89 und Gebrauchshöhen im DHHN92 (NHN) mit einer Genauigkeit von 2 cm gestattet. GeoSN vertreibt den Netzteil Nordost (GCG05_NO), der folgende Bundesländer abdeckt: Berlin, Brandenburg, Mecklenburg-Vorpommern, Sachsen, Sachsen-Anhalt, Thüringen Die Gitterweite in jedem Modell beträgt 1 Minute x 1,5 Minuten in geographischen Koordinaten. Zum Lieferumfang gehören neben der Gitterdatei in den Formaten ASCII, Binär sowie Trimble auch ein Interpolationsprogramm sowie beschreibende Dokumente.

  • Konzeptionelles Modell zur Abflusssimulation. Das Modell ist untergliedert in ein Produktions- und ein Transfermodul. Das Produktionsmodul besteht aus einem Korrekturfaktor von Niederschlag und potenzieller Evapotranspiration sowie einem nicht-linearen Bodenfeuchteindex, das Transfermodul aus zwei Abflusskomponenten mit zwei linearen Speichern sowie unverfälschter Zeitverzögerung. Ein Grad/Tag-Schneeschmelzemodul wird in von Schnee beeinflussten Einzugsgebieten angewendet. Modellinput sind Tageszeitreihen von potenzieller Evapotranspiration und Niederschlag im Einzugsgebiet, sowie Tageszeitreihen der Temperatur zur Schneeschmelze. Als Modelloutput wird der tägliche Abfluss generiert. Zeitliche Einheit in Tagen.

  • Empirisches Modell zur Abflusssimulation, Hochwasserabschätzung, Hoch- und Niedrigwasservorhersage sowie der Detektion von Trends. Das Modell mit Abspeicherungsstruktur ist untergliedert in ein Produktions- und ein Transfermodul. Im Produktionsmodul sind ein Abspeicherungsabschnitt, ein Speicher für die Bodenfeuchtebilanzierung (SMA) sowie eine Funktion zum Wasseraustausch enthalten. Das Transfermodul beinhaltet eine Perkolation vom SMA-Speicher, eine konstante volumetrische Aufspaltung des effektiven Niederschlags in eine direkte und eine indirekte Abflusskomponente, zwei Abflussganglinien sowie einen nichtlinearen Leitungsspeicher. Modellinput sind Tageszeitreihen von potenzieller Evapotranspiration und Niederschlag im Einzugsgebiet, als Modelloutput wird der tägliche Abfluss generiert. Zeitliche Einheit in Tagen, kürzere Zeitschritte möglich durch Modifikation einiger Modellparameter.

  • HBV ist ein konzeptionelles hydrologisches Modell und dient der Simulation und Vorhersage von Abflüssen in Fließgewässern. Ein Modellgebiet wird in kleinere Flusseinzugsgebiete aufgeteilt, für die der Wasserhaushalt simuliert wird. Jedes dieser Teileinzugsgebiete kann in Zonen unterschiedlicher Höhe und Landnutzung weiter untergliedert werden (semi-distributiv). Wesentliche Modellkomponenten sind Routinen für Schneeakkumulation und-schmelze, die Berechnung der Bodenfeuchte, die Abflussgenerierung sowie ein vereinfachtes Verfahren zur Wellenanblaufmodellierung. Der Simulationszeitschritt kann je nach Fragestellung von 1h bis 1d variiert werden. Als Eingangsdaten werden in der Regel Daten für Niederschlag, Lufttemperatur und potentielle Evapotranspiration verwendet. Ausgabegrößen von HBV sind z.B. der simulierte Abfluss am Gebietsauslass, der Gebietsniederschlag und die aktuelle Evapotranspiration. HBV wird im Forschungsprogramm KLIWAS am Rhein angewendet. Weitere Informationen finden sich in den factsheets.

  • Gewässergütemodell zur Simulation und Prognose des Stoffhaushalts und der Planktondynamik von Fließgewässern Modell besteht aus hydraulischen und ökologischen Modellbausteinen, Hauptinhalte sind: - Simulation von wichtigsten Prozessen des Sauerstoff- und Nährstoffhaushalts - Simulation der Algen- und Zooplanktonentwicklung - Simulation von Vorgängen am Gewässergrund QSim kann in drei verschiedenen Betriebsweisen angewendet werden: Lastfallsimulation mit stationärem Abfluss und Langzeitsimulation mit stationärer oder interstationärer Abflussberechnung. Räumlich angewendet wird das Modell auf den Hauptstrom des Flusses, allerdings sind auch Ausleitungsstrecken mit Wiedereinleitungen möglich. Modellinput sind verschiedene hydrologische, meteorologische, physikalisch/chemische und biologische Größen wie Flussgeometrie, Abfluss, Globalstrahlung, Wasser- und Lufttemperatur, pH-Wert, biochemischer Sauerstoffbedarf, etc. Als Modelloutput können Jahresgänge des Sauerstoffgehalts und anderer Wasserbeschaffenheitsparameter sowie biologische Größen berechnet werden.

  • Das Modell ist untergliedert in ein Produktions- und ein Transfermodul. Das Produktionsmodul besteht aus einem Korrekturfaktor von Niederschlag, einem nicht-linearen Bodenfeuchteindex und a lower store in which PE acts. Das Transfermodul beinhaltet eine direkte Abflusskomponente, einen Infiltrationsspeicher, einen linearen Leitungsspeicher sowie eine Abflussganglinie. Ein Grad/Tag-Schneeschmelzemodul wird in von Schnee beeinflussten Einzugsgebieten angewendet. Modellinput sind Tageszeitreihen von potenzieller Evapotranspiration und Niederschlag im Einzugsgebiet, sowie Tageszeitreihen der Temperatur zur Schneeschmelze. Als Modelloutput wird der tägliche Abfluss generiert. Zeitliche Einheit in Tagen.

  • Kopplung eines Vegetationsmodells mit abiotischen Standortbedingungen. Übertragung der Rückkopplungen zwischen den Standortfaktoren und verschiedenen Parametern des Röhrichtwachstums durch Transferfunktionen. Vegetationsmodell: • Modellierung des Wachstums und der Ausbreitung von Phragmites australis und Bolboschoenus maritimus • Prozesse: Wachstum, Mortalität und Ausbreitung durch Expansion der Rhizome • Zustandsvariablen: Rhizombiomasse, Wurzelbiomasse und oberirdische Biomasse Standortinformationen: • dynamisch in Raum und Zeit • als Raster in die Modellierung eingebunden Transferfunktionen: • Effekt der Vegetation auf Standortfaktor: Wert der Funktion ändert sich in Abhängigkeit von der Biomasse • Antwort der Vegetation auf die Standortbedingungen: Wert der Funktion ändert sich in Abhängigkeit vom Standortfaktor

Barrierefreiheit | Datenschutz | Impressum