Das integrierte Flussauenmodell INFORM in der Version 2.0 wurde im Jahre 2003 vorgestellt [Fuchs et al., 2003] und ist seitdem in der Bundesanstalt für Gewässerkunde (BfG) im Einsatz. Es vereint in sich Regelsätze und Simulationsmodelle für die unterschiedlichsten Fragestellungen bezüglich Abiotik und Biotik (zusammengefasst bezeichnet als Ökologie) der Flüsse und Flussauen. Im Laufe der Entwicklung und Anwendung des Systems wurden die Ansprüche der Nutzer und Anforderungen der Wissenschaft komplexer. Die Grundlagen der ökologischen Flussauenmodellierung und die Modellgrundlagen von INFORM 2.0 sind in der Mitteilung Nr. 25 der Bundesanstalt für Gewässerkunde vom Mai 2003 ausführlich beschrieben worden. Mit dem vorliegenden Bericht wird die Weiterentwicklung zur Version 3 vorgestellt. INFORM betrachtet ökologische Zusammenhänge in der Flussaue. In der Modellierung wird der Wirkungspfad Abfluss -> Flusswasser -> Grundwasser -> Boden -> Biotik verfolgt und bewertet. Der Modellablauf folgt dabei der Vorstellung, dass neben der Nutzung der Faktor Flusswasserstand und seine Dynamik für das Ökosystem Fluss und Aue von entscheidender Bedeutung ist und das Vorkommen von Pflanzen und Tieren sowie die Artenzusammensetzung ihrer Lebensgemeinschaften (Vegetation und Fauna) stark beeinflusst. INFORM bereitet ökologisch relevante Daten einer Flussaue zu planungs- und entscheidungserheblichen Ergebnissen auf. Damit ist es als Planungsinstrument in der ökologischen Modellierung für die Wasser- und Schifffahrtsverwaltung einsetzbar.
Räumlich verteiltes Modell zur Erosionsrisikobewertung auf europäischer Skala Das Modell basiert auf einem einfachen, konservativen Erosionsmodell, das in verschiedene Komponenten in Bezug auf Klima, Vegetation, Bodenfaktoren und Topographie zerlegt ist. Räumliche Auflösung 1km für ganz Europa, kleinräumigere Auflösung (250m) möglich. Schwerpunkt des Modells liegt auf der Vorhersage von Hangerosion und der Verteilung von Erosionsprodukten an der Basis des Hangs. Die dauerhaften hydrologischen Verhältnisse und Bodenbedeckungsgegebenheiten werden genutzt, um den Grenzwert vom täglichen Niederschlag zu schätzen, ab dem Abfluss und Erosion eintreten. Der Sedimenttransport wird als Produkt aus Bodenerosivität und einer Potenzfunktion von Abfluss und Abflussgradient errechnet. Die Erosivität hängt in erster Linie von den Bodeneigenschaften ab, wird aber auch in Hinblick auf die dauerhafte Landbedeckung bewertet.
Quasi-realistisches, dreidimensionales baroklines Schelfmodell Das Modell simuliert die Dynamik von Ozeanen, Küsten und Schelfmeeren von Nord- und Ostsee. HAMSOM ist ein z-Level Modell, löst die Modellgleichungen also mittels finiter Differenzen auf zeitlich unveränderlichen Tiefenhorizonten. Eine Besonderheit des Modells liegt in der Verwendung eines semi-impliziten Rechenverfahrens. Das Verfahren ermöglicht Simulationen mit freier Oberfläche bei großen Zeitschritten, was eine Voraussetzung für mehrjährige Simulationen in Regionen mit starken Wasserstandsschwankungen ist. Eine Kopplung mit ökosystemaren und atmosphärischen Modellen ist möglich. Modellinput sind atmosphärische Felder, monatliche Frischwasserabflüsse, gezeitenbedingte Wasserstände sowie klimatologische Mittelwerte für Salzgehalt und Temperatur. Als Modelloutput werden Werte von Transport, Temperatur und Salz, Wasserstand und Meereisparametern generiert.
Kopplung eines Vegetationsmodells mit abiotischen Standortbedingungen. Übertragung der Rückkopplungen zwischen den Standortfaktoren und verschiedenen Parametern des Röhrichtwachstums durch Transferfunktionen. Vegetationsmodell: • Modellierung des Wachstums und der Ausbreitung von Phragmites australis und Bolboschoenus maritimus • Prozesse: Wachstum, Mortalität und Ausbreitung durch Expansion der Rhizome • Zustandsvariablen: Rhizombiomasse, Wurzelbiomasse und oberirdische Biomasse Standortinformationen: • dynamisch in Raum und Zeit • als Raster in die Modellierung eingebunden Transferfunktionen: • Effekt der Vegetation auf Standortfaktor: Wert der Funktion ändert sich in Abhängigkeit von der Biomasse • Antwort der Vegetation auf die Standortbedingungen: Wert der Funktion ändert sich in Abhängigkeit vom Standortfaktor
HBV-D ist eine Modellsoftware für die Niederschlags-Abflusssimulation für Fließgewässer auf Einzugsgebietsskala. Das konzeptionelle Modell beinhaltet ein Modul für Schneeakkumulation und –schmelze, Verdunstung nach Turc-Ivanov, zur Bilanzierung der Bodenfeuchte, zur Generierung des Abflusses und ein Modul für die Abflusskonzentration im Gewässernetz. Als zeitliche Einheit wird der Tag verwendet. Als räumliche Einheiten dienen Teileinzugsgebiete, die reale Flusseinzugsgebiete repräsentieren; Teileinzugsgebiete mit deutlicher Höhenzonierung und Landnutzungsunterschieden können in landnutzungdifferenzierte Höhenzonen untergliedert werden (semi-distributiv). Modellinput sind beobachtete Zeitreihen von Niederschlag und Lufttemperatur. Modelloutput sind Oberflächenabfluss, Zwischenabfluss und Basisabfluss. Das Modell fand an Teileinzugsgebieten des Rheins und Elbe Anwendung. In KLIWAS findet eine Modellanpassung für die Elbe Anwendung statt. Details siehe factsheet!
LARSIM ist ein konzeptionelles Niederschlags-Abfluss-Modell zur Berechnung des Wasserhaushaltes sowie für die Erstellung von Abflussvorhersagen. Die Modellbausteine für Wasserhaushaltsberechnungen (Bodenmodul, Schneeschmelze, Verdunstung etc…) als auch für Pre- und Postprocessing können optional eingestellt werden. Modellinput sind gemessene oder über Klimamodelle berechnete Zeitreihen für Niederschlag, Lufttemperatur, relative Luftfeuchte, Windgeschwindigkeit, Globalstrahlung und Luftdruck. Es können gemessene Abflussdaten an Pegeln sowie wasserwirtschaftliche Maßnahmen, wie Angaben zu Wasserüberleitungen und Talsperren verwendet werden. Die Ausgaben des Modells sind flächenbezogene Wasserhaushaltsgrößen, und pegelbezogene Abflusskomponenten. Der Simulationszeitschritt wird je nach Fragestellung variabel von 5 Minuten bis 1 Monat gewählt. Das Modell kann rasterbasiert und teileinzugsgebietsbasiert aufgebaut werden. Für die Anwendung in KLIWAS siehe factsheet!
Modell zur integrierten Simulation von ein- und zweidimensionalen Prozessen in Bezug auf Wasserqualität in Fließgewässern, Deltas, Kanalsystemen und im Auenbereich. Drei verschiedene Produktlinien: "River", "Rural" und "Urban". Modular aufgebaut mit vielen implementierten Teilsystemen. Die für die kombinierte hydraulische Modellierung verwendeten Module sind Rural-Flow (1D) und Overland-Flow (2D). Weitere Module zur numerischen Berechnung von Gewässergüte, Hydrologie, Sedimenttransport und Morphologie oder der Echtzeitregelung von Wasserwirtschaftssystemen. Als Modelloutput werden Hochwasserberechnung und -vorhersage, die Optimierung/Regelung von Be- und Entwässerungssystemen, Kanalisations-Überlauf-Darstellungen, Berechnung von Flussmorphologien und Oberflächenwasserqualitäten generiert. Stationäre oder instationäre Betrachtungen sind möglich. Sobek kommt in KLIWAS in den Projekten 4.02 und 5.01 zur Anwendung, siehe factsheets!
COSERO ist ein konzeptionelles hydrologisches Modell und dient der Simulation und Vorhersage von Abflüssen in Fließgewässern sowie der Simulation des Wasserhaushalts. Hauptkomponenten des Modells sind Routinen für die Berechnung von Interzeption, Schneeakkumulation- und schmelze, Bodenfeuchte, Abflussgenerierung. Als räumliche Einheiten dienen Teileinzugsgebiete, die reale Flusseinzugsgebiete repräsentieren. Teileinzugsgebiete mit erheblichen Höhenschwankungen können in Zonen unterschiedlicher Höhe untergliedert werden. Simulationen können in Tages- oder Monatszeitschritten durchgeführt werden. Als Eingangsdaten werden in der Regel Daten für Niederschlag, Lufttemperatur und potentielle Evapotranspiration verwendet. Zahlreiche Ausgabegrößen sind in COSERO verfügbar, z.B. der Abfluss am Gebietsauslass und die aktuelle Evapotranspiration. COSERO wird im Forschungsprogramm KLIWAS an der Donau angewendet. Weitere Informationen finden sich in den factsheets.
Habitatmodelle sind auch bekannt als • SDMs= Species Distribution Models • Habitat-/Habitateignungsmodelle • Verbreitungsmodelle. Sie beschreiben den Zusammenhang zwichen dem Vorkommen einer Art (Artengemeinschaft, Diversität,…) und den zugrunde liegende Umweltbedingungen. Einsatz in KLIWAS siehe factsheet!
HBV ist ein konzeptionelles hydrologisches Modell und dient der Simulation und Vorhersage von Abflüssen in Fließgewässern. Ein Modellgebiet wird in kleinere Flusseinzugsgebiete aufgeteilt, für die der Wasserhaushalt simuliert wird. Jedes dieser Teileinzugsgebiete kann in Zonen unterschiedlicher Höhe und Landnutzung weiter untergliedert werden (semi-distributiv). Wesentliche Modellkomponenten sind Routinen für Schneeakkumulation und-schmelze, die Berechnung der Bodenfeuchte, die Abflussgenerierung sowie ein vereinfachtes Verfahren zur Wellenanblaufmodellierung. Der Simulationszeitschritt kann je nach Fragestellung von 1h bis 1d variiert werden. Als Eingangsdaten werden in der Regel Daten für Niederschlag, Lufttemperatur und potentielle Evapotranspiration verwendet. Ausgabegrößen von HBV sind z.B. der simulierte Abfluss am Gebietsauslass, der Gebietsniederschlag und die aktuelle Evapotranspiration. HBV wird im Forschungsprogramm KLIWAS am Rhein angewendet. Weitere Informationen finden sich in den factsheets.