Type

 

model

21 record(s)

 

Provided by

Type of resources

Update frequencies

From 1 - 10 / 21
  • Konzeptionelles, konzentiertes Modell zur Abflusssimulation. Das Modell ist untergliedert in ein Produktions- und ein Transfermodul. Das Produktionsmodul besteht aus einem Interzeptionsspeicher, einem nicht-linearen Bodenfeuchtespeicher, um denn bereinigten Niederschlag in zwei Komponenten aufzuspalten, sowie aus einer Funktion zzur Ermittlung der tatsächlichen Evapotranspiration aus dem Bodenfeuchtespeicher. Das Transfermodul beinhaltet eine zwei Abflusskomponenten sowie eine unverfälschte Zeitverzögerung. Ein Grad/Tag-Schneeschmelzemodul wird in von Schnee beeinflussten Einzugsgebieten angewendet. Modellinput sind Tageszeitreihen von potenzieller Evapotranspiration und Niederschlag im Einzugsgebiet, sowie Tageszeitreihen der Temperatur zur Schneeschmelze. Als Modelloutput wird der tägliche Abfluss generiert. Zeitliche Einheit in Tagen.

  • COSERO ist ein konzeptionelles hydrologisches Modell und dient der Simulation und Vorhersage von Abflüssen in Fließgewässern sowie der Simulation des Wasserhaushalts. Hauptkomponenten des Modells sind Routinen für die Berechnung von Interzeption, Schneeakkumulation- und schmelze, Bodenfeuchte, Abflussgenerierung. Als räumliche Einheiten dienen Teileinzugsgebiete, die reale Flusseinzugsgebiete repräsentieren. Teileinzugsgebiete mit erheblichen Höhenschwankungen können in Zonen unterschiedlicher Höhe untergliedert werden. Simulationen können in Tages- oder Monatszeitschritten durchgeführt werden. Als Eingangsdaten werden in der Regel Daten für Niederschlag, Lufttemperatur und potentielle Evapotranspiration verwendet. Zahlreiche Ausgabegrößen sind in COSERO verfügbar, z.B. der Abfluss am Gebietsauslass und die aktuelle Evapotranspiration. COSERO wird im Forschungsprogramm KLIWAS an der Donau angewendet. Weitere Informationen finden sich in den factsheets.

  • Für die direkte Umrechnung zwischen GPS-Höhen und Gebrauchshöhen aus Nivellements können Geoide bzw. Quasigeoide verwendet werden. Für das Gebiet der Bundesrepublik Deutschland wurde ein kombiniertes satellitengeodätisch-nivellitisch-gravimetrisches Quasigeoid abgeleitet, das eine Transformation zwischen GPS-Höhen im ETRS89 und Gebrauchshöhen im DHHN92 (NHN) mit einer Genauigkeit von 2 cm gestattet. GeoSN vertreibt den Netzteil Nordost (GCG05_NO), der folgende Bundesländer abdeckt: Berlin, Brandenburg, Mecklenburg-Vorpommern, Sachsen, Sachsen-Anhalt, Thüringen Die Gitterweite in jedem Modell beträgt 1 Minute x 1,5 Minuten in geographischen Koordinaten. Zum Lieferumfang gehören neben der Gitterdatei in den Formaten ASCII, Binär sowie Trimble auch ein Interpolationsprogramm sowie beschreibende Dokumente.

  • Quasi-realistisches, dreidimensionales baroklines Schelfmodell Das Modell simuliert die Dynamik von Ozeanen, Küsten und Schelfmeeren von Nord- und Ostsee. HAMSOM ist ein z-Level Modell, löst die Modellgleichungen also mittels finiter Differenzen auf zeitlich unveränderlichen Tiefenhorizonten. Eine Besonderheit des Modells liegt in der Verwendung eines semi-impliziten Rechenverfahrens. Das Verfahren ermöglicht Simulationen mit freier Oberfläche bei großen Zeitschritten, was eine Voraussetzung für mehrjährige Simulationen in Regionen mit starken Wasserstandsschwankungen ist. Eine Kopplung mit ökosystemaren und atmosphärischen Modellen ist möglich. Modellinput sind atmosphärische Felder, monatliche Frischwasserabflüsse, gezeitenbedingte Wasserstände sowie klimatologische Mittelwerte für Salzgehalt und Temperatur. Als Modelloutput werden Werte von Transport, Temperatur und Salz, Wasserstand und Meereisparametern generiert.

  • Habitatmodelle sind auch bekannt als • SDMs= Species Distribution Models • Habitat-/Habitateignungsmodelle • Verbreitungsmodelle. Sie beschreiben den Zusammenhang zwichen dem Vorkommen einer Art (Artengemeinschaft, Diversität,…) und den zugrunde liegende Umweltbedingungen. Einsatz in KLIWAS siehe factsheet!

  • Empirisches Modell zur Abflusssimulation, Hochwasserabschätzung, Hoch- und Niedrigwasservorhersage sowie der Detektion von Trends. Das Modell mit Abspeicherungsstruktur ist untergliedert in ein Produktions- und ein Transfermodul. Im Produktionsmodul sind ein Abspeicherungsabschnitt, ein Speicher für die Bodenfeuchtebilanzierung (SMA) sowie eine Funktion zum Wasseraustausch enthalten. Das Transfermodul beinhaltet eine Perkolation vom SMA-Speicher, eine konstante volumetrische Aufspaltung des effektiven Niederschlags in eine direkte und eine indirekte Abflusskomponente, zwei Abflussganglinien sowie einen nichtlinearen Leitungsspeicher. Modellinput sind Tageszeitreihen von potenzieller Evapotranspiration und Niederschlag im Einzugsgebiet, als Modelloutput wird der tägliche Abfluss generiert. Zeitliche Einheit in Tagen, kürzere Zeitschritte möglich durch Modifikation einiger Modellparameter.

  • Empirisches Modell zur Abflusssimulation, Hochwasserabschätzung, Hoch- und Niedrigwasservorhersage sowie der Detektion von Trends. Das Modell mit Abspeicherungsstruktur ist untergliedert in ein Produktions- und ein Transfermodul. Im Produktionsmodul sind ein Abspeicherungsabschnitt, ein Speicher für die Bodenfeuchtebilanzierung (SMA) sowie eine Funktion zum Wasseraustausch enthalten. Das Transfermodul beinhaltet eine Perkolation vom SMA-Speicher, eine konstante volumetrische Aufspaltung des effektiven Niederschlags in eine direkte und eine indirekte Abflusskomponente, zwei Abflussganglinien sowie einen nichtlinearen Leitungsspeicher. Modellinput sind Tageszeitreihen von potenzieller Evapotranspiration und Niederschlag im Einzugsgebiet, als Modelloutput wird der tägliche Abfluss generiert. Zeitliche Einheit in Tagen, kürzere Zeitschritte möglich durch Modifikation einiger Modellparameter.

  • Dreidimensionales baroklines Schelfmodell und Ästuarmodell Das Modell simuliert die Dynamik von Ozeanen, Küsten und Schelfmeeren von Nord- und Ostsee sowie Ästuaren HAMSOM ist ein z-Level Modell, löst die Modellgleichungen mittels finiter Differenzen auf zeitlich unveränderlichen Tiefenhorizonten. Eine Besonderheit des Modells liegt in der Verwendung eines semi-impliziten Rechenverfahrens. Das Verfahren ermöglicht Simulationen mit freier Oberfläche bei großen Zeitschritten, was eine Voraussetzung für mehrjährige Simulationen in Regionen mit starken Wasserstandsschwankungen ist. Eine Kopplung mit ökosystemaren und atmosphärischen Modellen ist möglich. Modellinput sind atmosphärische Felder, monatliche Frischwasserabflüsse, gezeitenbedingte Wasserstände sowie Salzgehalte und Temperaturen. Als Modelloutput werden u. a. Werte von Transport, Temperatur und Salz, Wasserstand und Meereisparametern generiert.

  • Gewässergütemodell zur Simulation und Prognose des Stoffhaushalts und der Planktondynamik von Fließgewässern Modell besteht aus hydraulischen und ökologischen Modellbausteinen, Hauptinhalte sind: - Simulation von wichtigsten Prozessen des Sauerstoff- und Nährstoffhaushalts - Simulation der Algen- und Zooplanktonentwicklung - Simulation von Vorgängen am Gewässergrund QSim kann in drei verschiedenen Betriebsweisen angewendet werden: Lastfallsimulation mit stationärem Abfluss und Langzeitsimulation mit stationärer oder interstationärer Abflussberechnung. Räumlich angewendet wird das Modell auf den Hauptstrom des Flusses, allerdings sind auch Ausleitungsstrecken mit Wiedereinleitungen möglich. Modellinput sind verschiedene hydrologische, meteorologische, physikalisch/chemische und biologische Größen wie Flussgeometrie, Abfluss, Globalstrahlung, Wasser- und Lufttemperatur, pH-Wert, biochemischer Sauerstoffbedarf, etc. Als Modelloutput können Jahresgänge des Sauerstoffgehalts und anderer Wasserbeschaffenheitsparameter sowie biologische Größen berechnet werden.

  • Kopplung eines Vegetationsmodells mit abiotischen Standortbedingungen. Übertragung der Rückkopplungen zwischen den Standortfaktoren und verschiedenen Parametern des Röhrichtwachstums durch Transferfunktionen. Vegetationsmodell: • Modellierung des Wachstums und der Ausbreitung von Phragmites australis und Bolboschoenus maritimus • Prozesse: Wachstum, Mortalität und Ausbreitung durch Expansion der Rhizome • Zustandsvariablen: Rhizombiomasse, Wurzelbiomasse und oberirdische Biomasse Standortinformationen: • dynamisch in Raum und Zeit • als Raster in die Modellierung eingebunden Transferfunktionen: • Effekt der Vegetation auf Standortfaktor: Wert der Funktion ändert sich in Abhängigkeit von der Biomasse • Antwort der Vegetation auf die Standortbedingungen: Wert der Funktion ändert sich in Abhängigkeit vom Standortfaktor

Barrierefreiheit | Datenschutz | Impressum