From 1 - 6 / 6
  • A marine physical biogeochemical model simulation was performed for the year 2012 covering the North Sea and Baltic Sea. Only data for the western Baltic Sea are provided here. The model output has been validated in Neumann et al. (2018a, doi: 10.5194/os-2018-71). The work was funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI, FKZ 50EW1601, https://www.io-warnemuende.de/meramo-en.html). The simulation was performed at the North-German Supercomputing Alliance (HLRN, project id: mvk00054, zulassung.hlrn.de/kurzbeschreibungen/mvk00054.pdf). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). The model simulation was forced by operational meteorological data of the German Weather Service (DWD). Atmospheric nitrogen deposition data of high spatial resolution of 4x4 km2 were provided by the Helmholtz-Zentrum Geesthacht within the EU BONUS SHEBA Project (Karl et al., 2019, doi: 10.5194/acp-2018-1317). Information on the riverine inputs, boundary conditions, and the model itself are provided in detail in Neumann et al. (2018b, doi: 10.5194/bg-2018-364). Nitrogen from atmospheric deposition of shipping-related nitrogen has been tagged in the model simulation according to a method by Menésguen et al. (2006, 10.4319/lo.2006.51.1_part_2.0591). Therefore, all nitrogen-containing model variables exist twice in the output: once as regular variables and once as nitrogen content from shipping-related activities. The concentrations of all prognostic biogeochemical model variables are given in nitrogen units according to the Redfield ratio.

  • A marine physical biogeochemical model simulation was performed for the year 2012 covering the North Sea and Baltic Sea. Only data for the western Baltic Sea are provided here. The model output has been validated in Neumann et al. (2018a, doi: 10.5194/os-2018-71). The work was funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI, FKZ 50EW1601, https://www.io-warnemuende.de/meramo-en.html). The simulation was performed at the North-German Supercomputing Alliance (HLRN, project id: mvk00054, zulassung.hlrn.de/kurzbeschreibungen/mvk00054.pdf). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). The model simulation was forced by operational meteorological data of the German Weather Service (DWD). Atmospheric nitrogen deposition data of medium spatial resolution of 16x16 km2 were provided by the Helmholtz-Zentrum Geesthacht within the EU BONUS SHEBA Project (Karl et al., 2019, doi: 10.5194/acp-2018-1317). Information on the riverine inputs, boundary conditions, and the model itself are provided in detail in Neumann et al. (2018b, doi: 10.5194/bg-2018-364). Nitrogen from atmospheric deposition of shipping-related nitrogen, agricultural-related nitrogen, and total nitrogen has been tagged in the model simulation according to a method by Menésguen et al. (2006, 10.4319/lo.2006.51.1_part_2.0591). Therefore, all nitrogen-containing model variables exist four times in the output: once as regular variables and once per tagged nitrogen source (total, shipping-related, agricultural-related). The concentrations of all prognostic biogeochemical model variables are given in nitrogen units according to the Redfield ratio.

  • A marine physical biogeochemical model simulation was performed for the year 2012 covering the North Sea and Baltic Sea. Only data for the western Baltic Sea are provided here. The model output has been validated in Neumann et al. (2018a, doi: 10.5194/os-2018-71). The work was funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI, FKZ 50EW1601, https://www.io-warnemuende.de/meramo-en.html). The simulation was performed at the North-German Supercomputing Alliance (HLRN, project id: mvk00054, zulassung.hlrn.de/kurzbeschreibungen/mvk00054.pdf). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). The model simulation was forced by operational meteorological data of the German Weather Service (DWD). Atmospheric nitrogen deposition data of 50x50 km2 spatial resolution were taken from the 2016 reporting of the European Measurement and Evaluation Programme (EMEP) as presented in EMEP (2016, url: http://emep.int/publ/reports/2016/EMEP_Status_Report_1_2016.pdf) and available from the Norwegian Meteorological Institute (2016, http://thredds.met.no/thredds/catalog/data/EMEP/2016_Reporting/catalog.html). Information on the riverine inputs, boundary conditions, and the model itself are provided in detail in Neumann et al. (2018b, doi: 10.5194/bg-2018-364). The concentrations of all prognostic biogeochemical model variables are given in nitrogen units according to the Redfield ratio.

  • A marine physical biogeochemical model simulation was performed for the year 2012 covering the North Sea and Baltic Sea. Only data for the western Baltic Sea are provided here. The model output has been validated in Neumann et al. (2018a, doi: 10.5194/os-2018-71). The work was funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI, FKZ 50EW1601, https://www.io-warnemuende.de/meramo-en.html). The simulation was performed at the North-German Supercomputing Alliance (HLRN, project id: mvk00054, zulassung.hlrn.de/kurzbeschreibungen/mvk00054.pdf). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). The model simulation was forced by operational meteorological data of the German Weather Service (DWD). Atmospheric nitrogen deposition data of high spatial resolution of 4x4 km2 were provided by the Helmholtz-Zentrum Geesthacht within the EU BONUS SHEBA Project (Karl et al., 2019, doi: 10.5194/acp-2018-1317). Information on the riverine inputs, boundary conditions, and the model itself are provided in detail in Neumann et al. (2018b, doi: 10.5194/bg-2018-364). Nitrogen from atmospheric deposition of shipping-related nitrogen has been tagged in the model simulation according to a method by Menésguen et al. (2006, 10.4319/lo.2006.51.1_part_2.0591). Therefore, all nitrogen-containing model variables exist twice in the output: once as regular variables and once as nitrogen content from shipping-related activities. The concentrations of all prognostic biogeochemical model variables are given in nitrogen units according to the Redfield ratio.

  • A marine physical biogeochemical model simulation was performed for the year 2012 covering the North Sea and Baltic Sea. Only data for the western Baltic Sea are provided here. The model output has been validated in Neumann et al. (2018a, doi: 10.5194/os-2018-71). The work was funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI, FKZ 50EW1601, https://www.io-warnemuende.de/meramo-en.html). The simulation was performed at the North-German Supercomputing Alliance (HLRN, project id: mvk00054, zulassung.hlrn.de/kurzbeschreibungen/mvk00054.pdf). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). The model simulation was forced by operational meteorological data of the German Weather Service (DWD). Atmospheric nitrogen deposition data of medium spatial resolution of 16x16 km2 were provided by the Helmholtz-Zentrum Geesthacht within the EU BONUS SHEBA Project (Karl et al., 2019, doi: 10.5194/acp-2018-1317). Information on the riverine inputs, boundary conditions, and the model itself are provided in detail in Neumann et al. (2018b, doi: 10.5194/bg-2018-364). Nitrogen from atmospheric deposition of shipping-related nitrogen, agricultural-related nitrogen, and total nitrogen has been tagged in the model simulation according to a method by Menésguen et al. (2006, 10.4319/lo.2006.51.1_part_2.0591). Therefore, all nitrogen-containing model variables exist four times in the output: once as regular variables and once per tagged nitrogen source (total, shipping-related, agricultural-related). The concentrations of all prognostic biogeochemical model variables are given in nitrogen units according to the Redfield ratio.

  • A marine physical biogeochemical model simulation was performed for the year 2012 covering the North Sea and Baltic Sea. Only data for the western Baltic Sea are provided here. The model output has been validated in Neumann et al. (2018a, doi: 10.5194/os-2018-71). The work was funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI, FKZ 50EW1601, https://www.io-warnemuende.de/meramo-en.html). The simulation was performed at the North-German Supercomputing Alliance (HLRN, project id: mvk00054, zulassung.hlrn.de/kurzbeschreibungen/mvk00054.pdf). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). The model simulation was forced by operational meteorological data of the German Weather Service (DWD). Atmospheric nitrogen deposition data of 50x50 km2 spatial resolution were taken from the 2016 reporting of the European Measurement and Evaluation Programme (EMEP) as presented in EMEP (2016, url: http://emep.int/publ/reports/2016/EMEP_Status_Report_1_2016.pdf) and available from the Norwegian Meteorological Institute (2016, http://thredds.met.no/thredds/catalog/data/EMEP/2016_Reporting/catalog.html). Information on the riverine inputs, boundary conditions, and the model itself are provided in detail in Neumann et al. (2018b, doi: 10.5194/bg-2018-364). The concentrations of all prognostic biogeochemical model variables are given in nitrogen units according to the Redfield ratio.

Barrierefreiheit | Datenschutz | Impressum