From 1 - 10 / 744
  • MPI-ESM1-2-LR’s CMIP6 CovidMIP baseline simulations are based on simulations forced with CO2 emissions allowing interactive carbon cycle. The baseline simulations (ssp245-cov-baseline, publish here) is a reference to the CovidMIP simulations (ssp245-covid, ssp245-cov-fossil, ssp245-cov-strgreen, and ssp245-cov-modgreen, published under CMIP6 CovidMIP) to investigate the effects of COVID-19 induced emission reductions on global carbon cycle, climate change and feedbacks. As presented in Jones et al. (2021), the radiative and climate responses of MPI-ESM1-2-LR are within the range of multi-model simulation results. have 10 ensemble members of the simulation named from r1i1p1f99 to r10i1p1f99. Here f99 is used in the file name *r*i1p1f99* of all CovidMIP simulations because of the updated aerosol forcing (Fiedler et al. 2021). Fiedler, S.; Wyser, K.; Rogelj, J. & van Noije, T. (2021): Radiative effects of reduced aerosol emissions during the COVID-19 pandemic and the future recovery, Atmospheric Research, 264, 105866, https://doi.org/10.1016/j.atmosres.2021.105866 Jones, C. D., Hickman, J. E., Rumbold, S. T., Walton, J., Lamboll, R. D., Skeie, R. B., ... & Ziehn, T. (2021). The climate response to emissions reductions due to COVID‐19: Initial results from CovidMIP. Geophysical research letters, 48(8), e2020GL091883.

  • The wind dataset was produced using the Weather Research and Forecasting (WRF) model, version 4.0.2. The model spatial configuration comprises one outer coarse-resolution domain at 9 km (d01) and two nested domains at 3 km (d02 and d03) horizontal spatial gridding. The domains d02 and d03 cover the Galapagos Islands and Ecuador’s mainland, respectively. The physics parametrization schemes follow the model configuration used for the production of the New European Wind Atlas (NEWA). The initial and boundary conditions for the WRF simulations were obtained from ERA5 reanalysis data. The simulations were performed month by month for the 14-year period. Each month was split into four runs and a 24-hour spin-up period was added at the beginning of each run. The post-processing of the WRF simulations follows the procedure described in Dörenkämper et al. (2020). The data provided here comprises hourly values from 00:00 UTC 01-01-2005 to 23:00 UTC 31-12-2018 of wind speed, wind direction and wind power density at seven vertical levels (30, 40, 50, 60, 70, 80, and 100 m above ground level). Note: The NetCDF files of this dataset were packed to reduce the data volume. To unpack the packed variables, please use the operator "unpack" in CDO. Acknowledgements: Thanks to Jonathan Chu, Martin Dörenkämper, and the NEWA team for their assistance on the configuration of the WRF model. Thanks to the High-Performance Computing Team from the University of Oldenburg for their computing facilities.

  • These data include supplemental datasets for 'CMIP6.CMIP.AWI.AWI-CM-1-1-MR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The AWI-CM 1.1 MR climate model, released in 2018, includes the following components: atmos: ECHAM6.3.04p1 (T127L95 native atmosphere T127 gaussian grid; 384 x 192 longitude/latitude; 95 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 830305 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km. Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.

  • These data include supplemental datasets for 'CMIP6.ScenarioMIP.AWI.AWI-CM-1-1-MR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The AWI-CM 1.1 MR climate model, released in 2018, includes the following components: atmos: ECHAM6.3.04p1 (T127L95 native atmosphere T127 gaussian grid; 384 x 192 longitude/latitude; 95 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 830305 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km. Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MPI-M.MPI-ESM1-2-LR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MPI-M.MPI-ESM1-2-LR.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MPI-M.MPI-ESM1-2-LR.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MPI-M.MPI-ESM1-2-LR.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MPI-M.MPI-ESM1-2-LR.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.C4MIP.MIROC.MIROC-ES2L' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC-ES2L climate model, released in 2018, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T42; 128 x 64 longitude/latitude; 40 levels; top level 3 hPa), land: MATSIRO6.0+VISIT-e ver.1.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), ocnBgchem: OECO ver.2.0; NPZD-type with C/N/P/Fe/O cycles, seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 500 km, atmos: 500 km, land: 500 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Barrierefreiheit | Datenschutz | Impressum