observational data

112 record(s)


Provided by

Type of resources


Contact for the resource

From 1 - 10 / 112
  • The research aircraft DO-128, call sign D-IBUF, of the IFF (TU Braunschweig) measures numerous meteorological and chemical variables to get a better understanding of the atmospheric processes which cause the development of precipitation. The aircraft starts from the Baden Airpark and flys among different flight pattern which are described in the flight protocols. The meteorological variables are static pressure and dynamic pressure at the nose boom, surface temperature, humidity mixing ratio by a lyman-alpha sensor, dewpoint temperature by a dewpoint-mirror, relative humidity by an aerodata-humicap, air temperature by a PT-100 sensor, vertical and horizontal wind components by a five-hole probe and GPS, turbulence (100 Hz), shortwave (pyranometer) and longwave (pyrgeometer) radiance in upper und lower half space. The chemical variables are mole fractions of ozone, carbon dioxide, carbon monoxide, nitrogen dioxide, nitrogen monoxide and nitric oxides (NOx). There are also a few variables for the position and the velocity of the aircraft stored in the data file. Additionally to the measurements by the aircraft, up to 30 drop-sondes can be dropped out of the aircraft. By using these sondes, vertical profiles of temperature, pressure, humidity and wind can be detected (see also the meta data describing the drop-sonde data). Special events are also marked in the data files by the event counter (e.g. dropping times of the drop-sondes, marks concerning the flight patterns etc.). The specific action or flight manoeuvre indicated by the event_number can be identified in the flight protocol.

  • The two instuments were: Scintec Sodar (MFAS) at Igelsberg, located near a waste disposal site. The device measures wind vectors every ten minutes. Metek RASS-Sodar in Bad-Rotenfels, located near a sewage treatment plant. The vertical wind component in the netCDF-files has been set to dummy values due to quality check failure for this variable.

  • The two energy balance station run by Meteo-France/CNRM measured high-frequency (20 Hz) eddy-covariance raw data with a Solent-HS (Gill Instruments Ltd.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above the target land use type corn. The measuring set-up was continuously running during July 2007 in order to provide turbulent flux data of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in additional info pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the additional info pdf-file corresponding to the individual station.

  • The energy balance stations run by University of Bayreuth continuously measured radiation and soil parameters over different land types with a sampling frequency of 1 Hz averaged to 1 min values within the data logger. After a check for plausibility the 1 min values have been averaged to 30 min intervals, which are provided in this data set. The instrumentation was different on each location. The following was measured depending on the station: - soil heat flux - soil temperature - volumetric soil water content - longwave radiation components - shortwave radiation components - tipping bucket rain gauge measurements The ground heat flux including the heat storage in the upper soil layer was determined from the measured soil heat flux, soil temperatures and volumetric soil water contents according to the 'simple measurement' (SM) method according to Liebethal and Foken (2007).

  • The period of permanent measurement was : 1st July - 31 July 2007 The measured parameters are : Air pressure, air temperature, relative humidity, wind speed and direction, position. The operation was effective during IOP, up to 6 soundings a day. Near the village of Meistratzheim, 20 km south_westward of Strasbourg. The platform on the site of Niederrott is installed just between 2 types of vegetation : Maize on the west and short grass on the east part.

  • The field experiments ALKOR 2000 (consisting of three cruises: ALKOR 4/2000, 6/2000, 10/2000) and ALKOR 2001 (4/2001, 6/2001, 10/2001) took place in the central Baltic Sea. The six cruises of the German Research Vessel Alkor with duration of about seven days each led to a point of the Baltic Sea which is most remote from the adjacent lands and additionally a grid point of regional climate model REMO. The ALKOR experiments as well as BASIS 1998 and BASIS 2001 are part of the research compound BALTIMOS (BALTic sea Integrated MOdel System). BALTIMOS in turn is part of the Baltic Sea Experiment (BALTEX). The overall objective of all eight field experiments (ALKOR and BASIS) was to collect a comprehensive data set suited to validate the coupled model system BALTIMOS for the Baltic Sea region. The observations mainly focus on: - the atmospheric boundary layer structure and processes and the air-sea-ice interaction over areas with inhomogeneous sea ice cover - the atmospheric boundary layer structure over open water under different synoptic conditions such as cold-air advection, warm-air advection or frontal passages. In addition to the published datasets several other measurements were performed during the experiment. Corresonding datasets will be published in the near future and are available on request. Details about all used platforms and sensors and all performed measurements are listed in the fieldreport. The following datasets are available on request: ground data at RV Alkor

  • The geographical distribution of the EARLINET stations is particularly suitable for dust observation, with stations located all around the Mediterranean (from the Iberian Peninsula in the West to the Greece and Bulgaria and Romania in the East) and in the center of the Mediterranean (Italian stations) where dust intrusions are frequent, and with several stations in the central Europe where dust penetrates occasionally. A suitable observing methodology has been established within the network, based on Saharan dust alerts distributed to all EARLINET stations. The dust alert is based on the operational outputs (aerosol dust load) of the DREAM (Dust REgional Atmospheric Model), and the Skiron models. The alerts are diffused 24 to 36 hours prior to the arrival of dust aerosols over the EARLINET sites. Runs of measurements longer than 3-hour observations, typical for the EARLINET climatological measurements are performed at the EARLINET stations in order to investigate the temporal evolution of the dust events. All aerosol backscatter and extinction profiles related to observations of Saharan dust layers are collected in the "Saharan dust" category of the EARLINET database.

  • This collection contains all measurements that have been performed in the frame of the EARLINET project during the period April 2000 - December 2015. Some of these measurements are also part of the collections 'Calipso', 'Climatology', 'SaharanDust' or 'VolcanicEruption'. In addition this collection also contains measurements from the categories 'Cirrus', 'DiurnalCycles', 'ForestFires', 'Photosmog', 'RuralUrban', and 'Stratosphere'. This collection also contains measurements not devoted to any of the above categories. More information about these categories and the contributing stations can be found in the file 'EARLINET_general_introduction.pdf' accompanying this dataset.

  • The positions of the meteorological towers (IMKMT1 to IMKMT4) are identical with the positions of the launching sites of the drop-up-sondes (IMKRS1 to IMKRS5). There have been no more than 4 teams operating on each IOP. For detailed information about the sites (including a map) and operating days see supplement pdf-file (cops_rsdu_imk_info_1). The parameters are: air_pressure: measured at about 1.8 m GND by a barometric pressure sensor that has a gill pressure port, 60s mean. air_temperature_at_1.8m: measured at about 1.8 m GND by a HYGROMER meteorology probe MP 400a, 60s mean. relative_humidity_at_1.8m: measured at about 1.8 m GND by a HYGROMER meteorology probe MP 400a, 60s mean. precipitation_amount: measured by a tipping bucket rain gauge (catchment area: 200 cm**2), 60s accumulated. wind_speed_at_4.5m, wind_from_direction_at_4.5m, virtual_temperature_at_4.5m: measured at about 4.5 m by a Young 3-D Sonic Anemometer, 60s mean.

  • The 9 m profile mast run by University of Bayreuth continuously measured profiles of the wind speed, the air temperature and the water vapor pressure above a corn field with a sampling frequency of 1 Hz averaged to 1 min values within the data logger. Six cup anemometers and five psychrometers have been mounted in different heights. After a check for plausibility the 1 min values have been averaged to 30 min intervals, which are provided in this data set. The following instruments have been installed for the parameters given below: - wind speed: F460 cup anemometer (Climatronics Corp.) - temperature and water vapor pressure: electrically aspirated psychrometer (Frankenberger) The water vapor pressure has been calculated from the measured dry and moist thermometer temperatures of the psychrometer according to Sprung's psychrometer formula.

Barrierefreiheit | Datenschutz | Impressum