The energy balance stations run by University of Bayreuth continuously measured radiation and soil parameters over different land types with a sampling frequency of 1 Hz averaged to 1 min values within the data logger. After a check for plausibility the 1 min values have been averaged to 30 min intervals, which are provided in this data set. The instrumentation was different on each location. The following was measured depending on the station: - soil heat flux - soil temperature - volumetric soil water content - longwave radiation components - shortwave radiation components - tipping bucket rain gauge measurements The ground heat flux including the heat storage in the upper soil layer was determined from the measured soil heat flux, soil temperatures and volumetric soil water contents according to the 'simple measurement' (SM) method according to Liebethal and Foken (2007).
The two energy balance station run by Meteo-France/CNRM measured high-frequency (20 Hz) eddy-covariance raw data with a Solent-HS (Gill Instruments Ltd.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above the target land use type corn. The measuring set-up was continuously running during July 2007 in order to provide turbulent flux data of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in additional info pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the additional info pdf-file corresponding to the individual station.
The 9 m profile mast run by University of Bayreuth continuously measured profiles of the wind speed, the air temperature and the water vapor pressure above a corn field with a sampling frequency of 1 Hz averaged to 1 min values within the data logger. Six cup anemometers and five psychrometers have been mounted in different heights. After a check for plausibility the 1 min values have been averaged to 30 min intervals, which are provided in this data set. The following instruments have been installed for the parameters given below: - wind speed: F460 cup anemometer (Climatronics Corp.) - temperature and water vapor pressure: electrically aspirated psychrometer (Frankenberger) The water vapor pressure has been calculated from the measured dry and moist thermometer temperatures of the psychrometer according to Sprung's psychrometer formula.
The energy balance stations run by FZK/IMK-TRO measured high-frequency (20 Hz or 32 Hz) eddy-covariance raw data with either a Solent R1012 (Gill Instruments Ltd.) sonic anemometer or a Young 81000 (R. M. Young Company) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above different target land use types. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in the additional pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the corresponding additional info pdf-files.
Several meteorological parameteres were measured at different stations run by FZK/IMK-TRO. Depending on the individual site i.e. wind direction, wind speed, global radiation, reflected irradiance, atmospheric longwave radiation, terrestric longwave radiation, surface temperature, precipitation, air pressure, soil heat flux, relative humidity. The respective set of parameters is described in the meta data of each station.
The energy balance stations run by University of Bayreuth measured either high-frequency (20 Hz) eddy-covariance raw data with a CSAT3 (Campbell Scientific, Inc.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer or turbulent fluxes of momentum, sensible and latent heat with a USA-1 (METEK GmbH, Germany) sonic anemometer and two psychrometers (Frankenberger) above different the target land use types. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in the additional pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the supplementary pdf-files corresponding to the individual station.
The energy balance station run by University of Bonn measured high-frequency (10 Hz) eddy-covariance raw data with a CSAT3 (Campbell Scientific, Inc.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above the target land use type meadow. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in additional info pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the corresponding additional info pdf-file.
Surface layer scintillometer data derived from a Optical Energy Balance Measurement System OEBMS1 with a Scintillometer SLS20 system by Scintec AG at station UV1EG (Deckenpfronn). The system operated at a measurement height of 1.75 m and with a path length of 117 m over the target land use type meadow.
The files contain vertical profiles of temperature and particle backscatter coefficient at 355 nm measured with the Rotational Raman Lidar of University of Hohenheim (UHOH RRL) during COPS 2007. The UHOH RRL was located at Hornisgrinde (COPS Supersite H) with other instruments. The temporal resolution of the particle-backscatter-coefficient data is 10 s in June 2007 and 13 s in July and August 2007, respectively. The spatial resolution is 37.5 m. For the temperature data of this release, the temporal and spatial resolution of the data is 5 minutes and 37.5 m, respectively. Missing values were added for data containing clouds and exceeding statistical measurement uncertainties of 2 K. Scanning data, data with higher resolution, data of higher altitudes, or data of measurement days which are not published within this release are available on request. See pdf summary in entry 'cops_suph_rlidar_info_1' for further information.
The files contain vertical profiles of absolute humidity and backscatter signals at 820 nm measured with the Water Vapor Differential Absorption Lidar of University of Hohenheim (UHOH DIAL) during COPS 2007. The UHOH DIAL was located at Hornisgrinde (COPS Supersite H) with other instruments. The backscatter signals are offline backscatter data multiplied with range squared in arbitrary units. These data show aerosols and clouds above the lidar. The temporal and spatial resolution of these data is 10 s and 15 m, respectively. For the humidity data (in g/m**-3) of this release, the temporal and spatial resolution is the same but with a 150-m-long weighting function. Data with higher resolution, data of higher altitudes, or data of measurement days which are not published within this release are available on request. See pdf summary in entry 'cops_suph_rlidar_info_1' for further information.