Daily files of humidity mixing ratio profiles from a combination of Raman lidar and microwave radiometer. Both instruments are part of the LACROS facility that was installed on the area of a sewage treatment plant in Krauthausen, south of Juelich during the HOPE campaign.
Attenuated backscatter profiles from the CALIOP satellite lidar are used to estimate cloud base heights of lower-troposphere liquid clouds (cloud base height below approximately 3 km). Even when clouds are thick enough to attenuate the lidar beam (optical thickness > 5), the technique provides cloud base heights by treating the cloud base height of nearby thinner clouds as representative of the surrounding cloud field. Using ground-based ceilometer data, uncertainty estimates for the cloud base height product at retrieval resolution are derived as a function of various properties of the CALIOP lidar profiles. Evaluation of the predicted cloud base heights and their predicted uncertainty using a second, statistically independent, ceilometer dataset shows that cloud base heights and uncertainties are biased by less than 10%. CBASE provides two files for each CALIOP VFM input file: one using a 40 km window to detect the cloud field base height, and one using a 100 km window. (The input CALIOP VFM dataset is organized by the daytime/nighttime half of each orbit.) The file name pattern is CBASE<resolution>_<date>T<time><day/night>.nc (identical to the input CALIOP VFM file name with the exception of the product name). Files are organized into subdirectories by half-orbit start date.
Daily files of humidity mixing ratio profiles from a combination of Raman lidar and microwave radiometer. Both instruments are part of the LACROS facility that was installed on the area of a sewage treatment plant in Krauthausen, south of Juelich during the HOPE campaign.
Cloud droplet number concentration is derived from MODerate Resolution Imager Spectroradiometer (MODIS) data from NASA's Terra platform. The MOD08_D3 daily data (collection 4 processing stream) on a grid of 1x1 degrees is used, which can be downloaded from http://eosdata.gsfc.nasa.gov/daac-bin/MODIS/Data_order.pl. From the joint histrogram of cloud optical thickness (COD) and cloud-top droplet effective radius (CDR) for liquid water clouds, CDNC is diagnosed assuming adiabatic clouds.
Data output from the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A set of 6 core experiments (a base, co2x2, ch4x3, solar, bcx10, sulx5 where the solar experiment has increased incoming solar radiation), 5 regional experiments (bcx10asia, sulx10asia, sulx10eur, sulred, sulasiared) and 7 phase 2 experiments (base2, cfc12, cfc11, n2o1p, ozone, lndus, bcslt) have been run by one or more of the participating models; CanESM2, MPI-ESM, NorESM1, NCAR-CESM1-CAM4, NCAR-CESM1-CAM5, MIROC-SPRINTARS, HadGEM2, HadGEM3, GISS-E2-R, IPSL-CM5A, ECHAM-HAM. Each of the experiments has been run (for the most part) both in coupled and fixed sst ocean setups. Time designations varry from model to model, however, all models have ran the coupled ocean experiments for 100 years and 15 years in the fixed sst experiments. Outputs varry between models, but include 2D and 3D monthly variables, 2D daily variables and fixed 2D fields.