From 1 - 3 / 3
  • Multi-years (2014-2019) observations of dual-pol X-band weather radar (BoXPol) with 10 different elevations (1 to 28 degree). The spatial resolution is one degree azimuthal and 25m to 150m in range. The Temporal resolution is 5 minutes. Technical details: BoXPol is an active polarimetric Doppler X-band radar located at a 30 m high building next to the Meteorological Institute in Bonn. The radar transmits and receives horizontal and vertical polarized electromagnetic waves simultaneously (STAR/SHV-mode). Instrument type: EEC DWSR-2001-X-SDP.

  • This version of the fully coupled catchment simulation features the atmospheric model COSMO run at 1.1km (0.01°rotlat/lon grid), the land surface model CLM and the groundwater model Parflow, both run at 400m (regular lat/lon grid). Coupled with OASIS3-MCT.

  • The energy balance station run by University of Bonn measured high-frequency (10 Hz) eddy-covariance raw data with a CSAT3 (Campbell Scientific, Inc.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above the target land use type meadow. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in additional info pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the corresponding additional info pdf-file.

Barrierefreiheit | Datenschutz | Impressum