The SRES data sets were published by the IPCC in 2000 and classified into four different scenario families (A1, A2, B1, B2). SRES_A2 storyline describes a very heterogeneous world with the underlying theme of self-reliance and preservation of local identities. It results in this scenario a continous increasing population together with a slower economic growth and technological change. The atmospheric component AGCM2 is a spectral model with triangular truncation at wave no. 32 and 10 vertical levels. The ocean model component based on the GFDL MOM 1.1 code with 29 vertical levels and has a isopycnal / eddy stirring parameterization (Gent and McWilliams, 1990). CGCM2 (http://ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=40D6024E-1 ). The changes of anthropogenic emissions of CO2, CH4, N2O and sulphur dioxide are prescribed according to the above mentioned scenario. These data belongs to a set of three ensemble runs, with the CCCma-model, using the SRES_A2 scenario. They provide monthly averaged values of selected variables for the IPCC-DDC.
The SRES data sets were published by the IPCC in 2000 and classified into four different scenario families (A1, A2, B1, B2). SRES_B2 storyline describes a world in which the emphasis is on local solutions to economic, social and enviromental sustainability. The global population is increasing at a lower rate than A2. It has an intermediate level of economic development and a less rapid and more diverse technological change than in A1 and B1. The atmospheric component AGCM2 is a spectral model with triangular truncation at wave no. 32 and 10 vertical levels. The ocean model component based on the GFDL MOM 1.1 code with 29 vertical levels and has a iospycnal / eddy stirring parameterization (Gent and McWilliams,1990). CGCM2 (http://ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=40D6024E-1 ). The changes of anthropogenic emissions of CO2, CH4, N2O and sulphur dioxide are prescribed according to the above mentioned scenario. These data belongs to a set of three ensemble runs, with the CCCma-model, using the SRES_B2 scenario. They provide monthly averaged values of selected variables for the IPCC-DDC.
The SRES data sets were published by the IPCC in 2000 and classified into four different scenario families (A1, A2, B1, B2). SRES_A2 storyline describes a very heterogeneous world with the underlying theme of self-reliance and preservation of local identities. It results in this scenario a continous increasing population together with a slower economic growth and technological change. The atmospheric component AGCM2 is a spectral model with triangular truncation at wave no. 32 and 10 vertical levels. The ocean model component based on the GFDL MOM 1.1 code with 29 vertical levels and has a isopycnal / eddy stirring parameterization (Gent and McWilliams, 1990). CGCM2 (http://ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=40D6024E-1 ). The changes of anthropogenic emissions of CO2, CH4, N2O and sulphur dioxide are prescribed according to the above mentioned scenario. These data belongs to a set of three ensemble runs, with the CCCma-model, using the SRES_A2 scenario. They provide monthly averaged values of selected variables for the IPCC-DDC.
The SRES data sets were published by the IPCC in 2000 and classified into four different scenario families (A1, A2, B1, B2). SRES_B2 storyline describes a world in which the emphasis is on local solutions to economic, social and enviromental sustainability. The global population is increasing at a lower rate than A2. It has an intermediate level of economic development and a less rapid and more diverse technological change than in A1 and B1. The atmospheric component AGCM2 is a spectral model with triangular truncation at wave no. 32 and 10 vertical levels. The ocean model component based on the GFDL MOM 1.1 code with 29 vertical levels and has a iospycnal / eddy stirring parameterization (Gent and McWilliams,1990). CGCM2 (http://ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=40D6024E-1 ). The changes of anthropogenic emissions of CO2, CH4, N2O and sulphur dioxide are prescribed according to the above mentioned scenario. These data belongs to a set of three ensemble runs, with the CCCma-model, using the SRES_B2 scenario. They provide monthly averaged values of selected variables for the IPCC-DDC.
piControl is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 3.1 piControl (3.1 Pre-Industrial Control) - Version 1: Pre-Industrial coupled atmosphere/ocean control run. Imposes non-evolving pre-industrial conditions. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .
'amip4K' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 6.8 amip4K (6.8 AMIP plus 4K anomaly) - Version 1: Consistent with CFMIP requirements, add a uniform +4 K SST to the AMIP SSTs of expt. 3.3 (which is the "control" for this run). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .
'amip4xco2' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 6.5 amip4xco2 (6.5 4xCO2 AMIP) - Version 1: Identical to expt. 6.2b, but with AMIP SSTs prescribed as in expt. 3.3 (which is the control for this run). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.
amipFuture is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. amipFuture (6.6 AMIP plus patterned anomaly) - Version 2: Consistent with CFMIP requirements, add a patterned SST perturbation to the AMIP SSTs of expt. 3.3 (which is the 'control' for this run). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .
'amip' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 3.3 amip (3.3 AMIP) - Version 1: AMIP (1979 - at least 2008). Impose SSTs and sea ice from observations but with other conditions as in experiment 3.2 historical. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.
'1pctCo2' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 6.1 1pctCo2 (6.1 1 percent per year CO2) - Version 1: Idealized 1% per year increase in atmospheric CO2 to quadrupling. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.