From 1 - 10 / 15
  • This directory (experiment) contains volcanic SO2 data derived from limb viewing satellites for the lower stratosphere from 1998 to 2012. The usage of the data is described in Timmreck et al., (2018), datasets VolcDB1 and VolcDB1_3D. We provide 3D-plumes of observed volume mixing ratio perturbations in the lower stratosphere / upper troposphere typically derived from 10-day periods as nc-files and integrated values of injected SO2 mass with peak latitudes and altitudes as Fortran formatted ascii files (A11,5(1X,I3),I4,4(1X,I3),5(1X,I2),I3,4(1X,I2)) for at maximum 5 events at one time. Instead of A11 I2,I5,I5 can be used to read in the components of time. The data from Dec. 1997 to Jan. 2002 are based on L2-files of SAGE II (V7.0) provided by the NASA DAAC (Thomason et al., 2008). The data from Jul. 2002 to Mar. 2012 use the updated 5-day time series of MIPAS (Hoepfner et al., 2015), supplemented by SO2 derived from GOMOS extinctions (Bingen et al., 2017, with a corresponding table). SO2volc3D_pap_T42L90r.nc: 3D SO2 for 131 events in T42L90 resolution (ECHAM-grid in grid_T42L90.nc) surface to about 80km).. SO2volc3D_pap_T63L90r.nc: same in T63L90 resolution (ECHAM-grid in grid_T63L90.nc). Here a downscaling by 0.7 for low latitude eruptions is recommended because of less removal by overshooting convection (The data in the T42 file and in the table in Bingen et al 2017 were upscaled within the measurement uncertainty to overcome the model artifact in low resolution, this applies only for the ENVISAT part from Jul. 2002 on). Latitude from South to North, for use with ECHAM please reverse. The levels on the hybrid-grid in the grid files are defined as lev(x,y,z)=hyam(z)+hybm(z)*apsave(x,y), in Pa (apsave annual average of surface pressure or orography). Volcano_or_region_echam_merged_dd_mm_yyyy.txt: integrated SO2 mass injected (in kt), SAGE and ENVISAT period. The postscript-file is an example on the T42 grid, the *doc-file includes the volcano names for the data in the *.txt Files, see also http://wwww.volcano.si.edu (Smithsonian volcano database). AEROCOM-DIEHL_UMZ1_tropo11.nc: Fluxes from outgassing volcanoes in the troposphere (below 200hPa), taken from AEROCOM (Diehl, 2012; Caution, filled with odd climatology after 2009, monthly, beginning in Jan. 1950) AEROCOM-DIEHL_1297-0312_tropo11.nc: Subset beginning Dec. 1997.

  • This experiment comprises 3 different simulations: - future simulations scenario RCP6.0 - model data output mostly as 10-hourly global snapshots, monthly averages or as monthly accumulated variables, on model levels or pressure levels, respectively RC2-base-04: SSTs/SICs: taken from coupled HADGEM2-ES simulation T42L90MA 1960-2099 RC2-base-05: same as RC2-base-04 but with resolution T42L47MA 1960-2099 RC2-oce-01: with interactive MPI ocean T42L47MA/GR30L40 1960-2100 For further studies based on simulations of the ESCiMo project and on the EMAC model please also refer to: https://www.atmos-chem-phys.net/special_issue812.html https://gmd.copernicus.org/articles/special_issue10_22.html https://www.atmos-chem-phys.net/special_issue22.html http://www.pa.op.dlr.de/~PatrickJoeckel/ESCiMo/publications/escimo_publications.html

  • This experiment comprises 5 different simulations: - hind-cast simulations with specified dynamics from 1979 to 2013 - ERA-Interim SSTs/SICs RC1SD-base-07 T42L90MA “wave zero” (i.e. the global mean) temperature included for the Newtonian relaxation RC1SD-base-08 T42L47MA global mean temperature (wave 0) included for the Newtonian relaxation RC1SD-base-09 T42L47MA global mean temperature (wave 0) not included for the Newtonian relaxation RC1SD-base-10 T42L90MA global mean temperature (wave 0) not included for the Newtonian relaxation RC1SD-base-10a (years 2000-2014) T42L90MA global mean temperature (wave 0) not included for the Newtonian relaxation with corrected road traffic emissions and stratospheric aerosol optical properties For further studies based on simulations of the ESCiMo project and on the EMAC model please also refer to: https://www.atmos-chem-phys.net/special_issue812.html https://gmd.copernicus.org/articles/special_issue10_22.html https://www.atmos-chem-phys.net/special_issue22.html http://www.pa.op.dlr.de/~PatrickJoeckel/ESCiMo/publications/escimo_publications.html MESSy version 2.50.5 http://www.messy-interface.org

  • This experiment comprises 4 different simulations: - hind-cast simulations, free-running - SSTs/SICs: global data set HadISST provided by the UK Met Office Hadley Centre - model data output mostly as 10-hourly global snapshots, monthly averages or as monthly accumulated variables, on model levels or pressure levels, respectively RC1-base-07: T42L90MA 1960–2011 RC1-base-07a: same as RC1-base-07, with corrected optical properties of stratospheric aerosol 1990-2010 RC1-base-08: T42L47MA 1960-2011 RC1-base-08a: same as RC1-base-08, with corrected optical properties of stratospheric aerosol 1990-2010 For further studies based on simulations of the ESCiMo project and on the EMAC model please also refer to: https://www.atmos-chem-phys.net/special_issue812.html https://gmd.copernicus.org/articles/special_issue10_22.html https://www.atmos-chem-phys.net/special_issue22.html http://www.pa.op.dlr.de/~PatrickJoeckel/ESCiMo/publications/escimo_publications.html

  • Simulation with most recent version of MADE3 into the atmospheric chemistry general circulation model EMAC, including a detailed evaluation of a ten-year aerosol simulation with MADE3 as part of EMAC. Model details and setup specification are described in Kaiser et al. (Geosci. Model Dev., 2018). We compare simulation output to station network measurements of near-surface aerosol component mass concentrations, to airborne measurements of aerosol mass mixing ratio and number concentration vertical profiles, to ground-based and airborne measurements of particle size distributions, and to station network and satellite measurements of aerosol optical depth. Furthermore, we describe and apply a new evaluation method, which allows a comparison of model output to size-resolved electron microscopy measurements of particle composition. Although there are indications that fine mode particle deposition may be underestimated by the model, we obtained satisfactory agreement with the observations. Remaining deviations are of similar size as those identified in other global aerosol model studies. Thus, MADE3 can be considered ready for application within EMAC. Due to its detailed representation of aerosol mixing state, it is especially useful for simulating wet and dry removal of aerosol particles, aerosol-induced formation of cloud droplets and ice crystals as well as aerosol-radiation interactions. Besides studies on these fundamental processes, we also plan to use MADE3 for a reassessment of the climate effects of anthropogenic aerosol perturbations. Please cite Kaiser et al. (Geosci. Model Dev., 2018) if using the data.

  • Simulation with most recent version of MADE3 into the atmospheric chemistry general circulation model EMAC, including a detailed evaluation of a ten-year aerosol simulation with MADE3 as part of EMAC. Model details and setup specification are described in Kaiser et al. (Geosci. Model Dev., 2018). We compare simulation output to station network measurements of near-surface aerosol component mass concentrations, to airborne measurements of aerosol mass mixing ratio and number concentration vertical profiles, to ground-based and airborne measurements of particle size distributions, and to station network and satellite measurements of aerosol optical depth. Furthermore, we describe and apply a new evaluation method, which allows a comparison of model output to size-resolved electron microscopy measurements of particle composition. Although there are indications that fine mode particle deposition may be underestimated by the model, we obtained satisfactory agreement with the observations. Remaining deviations are of similar size as those identified in other global aerosol model studies. Thus, MADE3 can be considered ready for application within EMAC. Due to its detailed representation of aerosol mixing state, it is especially useful for simulating wet and dry removal of aerosol particles, aerosol-induced formation of cloud droplets and ice crystals as well as aerosol-radiation interactions. Besides studies on these fundamental processes, we also plan to use MADE3 for a reassessment of the climate effects of anthropogenic aerosol perturbations. Please cite Kaiser et al. (Geosci. Model Dev., 2018) if using the data.

  • The concentrations and deposition of atmospheric constituents such as air pollutants were modeled with the Community Multiscale Air Quality (CMAQ) Model system for the year 2008. A focus was on sea salt emissions, atmospheric sea salt concentrations and the interaction between sea salt particles and atmospheric nitrogen compounds. For this purpose, two model runs with different realistic sea salt emission parameterizations were performed and are provided here. The model run CMAQ_CD24_seasalt_base uses the default sea salt emission parameterization of CMAQ denoted as GO03. The model run CMAQ_CD24_seasalt_ov14 uses an alternative sea salt emission parameterization denoted as OV14. Please refer to the connected references for information on the two sea salt emission parameterizations and their implementation. The dataset also contains meteorological input parameters in order to allow the user to perform unit conversions for some model variables. Additionally, the land-sea mask and land fraction data per model grid cell are provided. The projection is a Lambert Conformal Conic projection. The parameters are given in the netCDF files.

  • This experiment comprises 5 different simulations: - hind-cast simulations with specified dynamics from 1979 to 2013 - ERA-Interim SSTs/SICs RC1SD-base-07 T42L90MA “wave zero” (i.e. the global mean) temperature included for the Newtonian relaxation RC1SD-base-08 T42L47MA global mean temperature (wave 0) included for the Newtonian relaxation RC1SD-base-09 T42L47MA global mean temperature (wave 0) not included for the Newtonian relaxation RC1SD-base-10 T42L90MA global mean temperature (wave 0) not included for the Newtonian relaxation RC1SD-base-10a (years 2000-2014) T42L90MA global mean temperature (wave 0) not included for the Newtonian relaxation with corrected road traffic emissions and stratospheric aerosol optical properties For further studies based on simulations of the ESCiMo project and on the EMAC model please also refer to: https://www.atmos-chem-phys.net/special_issue812.html https://gmd.copernicus.org/articles/special_issue10_22.html https://www.atmos-chem-phys.net/special_issue22.html http://www.pa.op.dlr.de/~PatrickJoeckel/ESCiMo/publications/escimo_publications.html MESSy version 2.50.5 http://www.messy-interface.org Technical details: simulation run on IBM Power 6 p375 "Blizzard" at DKRZ

  • This directory (experiment) contains volcanic SO2 data derived from limb viewing satellites for the lower stratosphere from 1998 to 2012. The usage of the data is described in Timmreck et al., (2018), datasets VolcDB1 and VolcDB1_3D. We provide 3D-plumes of observed volume mixing ratio perturbations in the lower stratosphere / upper troposphere typically derived from 10-day periods as nc-files and integrated values of injected SO2 mass with peak latitudes and altitudes as Fortran formatted ascii files (A11,5(1X,I3),I4,4(1X,I3),5(1X,I2),I3,4(1X,I2)) for at maximum 5 events at one time. Instead of A11 I2,I5,I5 can be used to read in the components of time. The data from Dec. 1997 to Jan. 2002 are based on L2-files of SAGE II (V7.0) provided by the NASA DAAC (Thomason et al., 2008). The data from Jul. 2002 to Mar. 2012 use the updated 5-day time series of MIPAS (Hoepfner et al., 2015), supplemented by SO2 derived from GOMOS extinctions (Bingen et al., 2017, with a corresponding table). SO2volc3D_pap_T42L90r.nc: 3D SO2 for 131 events in T42L90 resolution (ECHAM-grid in grid_T42L90.nc) surface to about 80km).. SO2volc3D_pap_T63L90r.nc: same in T63L90 resolution (ECHAM-grid in grid_T63L90.nc). Here a downscaling by 0.7 for low latitude eruptions is recommended because of less removal by overshooting convection (The data in the T42 file and in the table in Bingen et al 2017 were upscaled within the measurement uncertainty to overcome the model artifact in low resolution, this applies only for the ENVISAT part from Jul. 2002 on). Latitude from South to North, for use with ECHAM please reverse. The levels on the hybrid-grid in the grid files are defined as lev(x,y,z)=hyam(z)+hybm(z)*apsave(x,y), in Pa (apsave annual average of surface pressure or orography). Volcano_or_region_echam_merged_dd_mm_yyyy.txt: integrated SO2 mass injected (in kt), SAGE and ENVISAT period. The postscript-file is an example on the T42 grid, the *doc-file includes the volcano names for the data in the *.txt Files, see also http://wwww.volcano.si.edu (Smithsonian volcano database). AEROCOM-DIEHL_UMZ1_tropo11.nc: Fluxes from outgassing volcanoes in the troposphere (below 200hPa), taken from AEROCOM (Diehl, 2012; Caution, filled with odd climatology after 2009, monthly, beginning in Jan. 1950) AEROCOM-DIEHL_1297-0312_tropo11.nc: Subset beginning Dec. 1997.

  • This experiment comprises 4 different simulations: - hind-cast simulations, free-running - SSTs/SICs: global data set HadISST provided by the UK Met Office Hadley Centre - model data output mostly as 10-hourly global snapshots, monthly averages or as monthly accumulated variables, on model levels or pressure levels, respectively RC1-base-07: T42L90MA 1960–2011 RC1-base-07a: same as RC1-base-07, with corrected optical properties of stratospheric aerosol 1990-2010 RC1-base-08: T42L47MA 1960-2011 RC1-base-08a: same as RC1-base-08, with corrected optical properties of stratospheric aerosol 1990-2010 For further studies based on simulations of the ESCiMo project and on the EMAC model please also refer to: https://www.atmos-chem-phys.net/special_issue812.html https://gmd.copernicus.org/articles/special_issue10_22.html https://www.atmos-chem-phys.net/special_issue22.html http://www.pa.op.dlr.de/~PatrickJoeckel/ESCiMo/publications/escimo_publications.html Technical details: simulation run on IBM Power 6 p375 "Blizzard" at DKRZ

Barrierefreiheit | Datenschutz | Impressum