The period of permanent measurement was : 1st July - 31 July 2007 The measured parameters are : Air pressure, air temperature, relative humidity, wind speed and direction, position. The operation was effective during IOP, up to 6 soundings a day. Near the village of Meistratzheim, 20 km south_westward of Strasbourg. The platform on the site of Niederrott is installed just between 2 types of vegetation : Maize on the west and short grass on the east part.
The positions of the meteorological towers (IMKMT1 to IMKMT4) are identical with the positions of the launching sites of the drop-up-sondes (IMKRS1 to IMKRS5). There have been no more than 4 teams operating on each IOP. For detailed information about the sites (including a map) and operating days see supplement pdf-file (cops_rsdu_imk_info_1). The parameters are: air_pressure: measured at about 1.8 m GND by a barometric pressure sensor that has a gill pressure port, 60s mean. air_temperature_at_1.8m: measured at about 1.8 m GND by a HYGROMER meteorology probe MP 400a, 60s mean. relative_humidity_at_1.8m: measured at about 1.8 m GND by a HYGROMER meteorology probe MP 400a, 60s mean. precipitation_amount: measured by a tipping bucket rain gauge (catchment area: 200 cm**2), 60s accumulated. wind_speed_at_4.5m, wind_from_direction_at_4.5m, virtual_temperature_at_4.5m: measured at about 4.5 m by a Young 3-D Sonic Anemometer, 60s mean.
The Soundings were usually performed during the daytime of IOPs at two fixed locations. Scheduled launching times were at 05, 08, 11, 14, 17 and 20 UTC. Radiosounding at Burnhaupt le Bas, France: Sondes of the type DFM-06 manufactured by the Company GRAW (http://graw.de) have been used. Radiosounding at FZK, Karlsruhe, Germany Sondes of the type DFM-97 manufactured by GRAW (http://graw.de) have been used. From 26 July at 5:02 DFM-06 sondes of the same company have been used. On 25 July at 11:08 there was a test run of a DFM-06 sonde.
University of Leeds radiosonde (Vaisala RS80 and RS92-SGP), Hornisgrinde site 2007-06-11 to 2007-08-30 University of Leeds radiosonde (Vaisala RS80 and RS92-SGP), Achern site 2007-06-05 to 2007-08-30
Dropsondes (mobile radiosondes) were launched by 5 mobile radiosonde teams. The launching sites were different from IOP to IOP. The positions are identical with the positions of the meteorological towers (imkmt1 to imkmt4). There have been no more than 4 teams operational on each IOP. The dropsondes are radiosonde-like systems. The maximum height is 12050 m above MSL. At this height, the sondes are separated from the balloon and then glide to the ground. Drop points are up to 70 kilometres apart from launching sites. For detailed information about the sites see supplement file and map.
dphase_prevah The hydrological model PREVAH is adopted for (ensemble) runoff forecasts for several basins in Switzerland and North Italy. Runoff nowcasting is driven by observed meteorology consisting of data from meteorological stations and operational radar precipitation data. Forecasts are computed with three deterministic NWP models and with one atmospheric ensemble predictions system (EPS). Principal investigators are the Institute for Atmospheric and Climate Sciences of the ETH (IAC_ETH) and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). Data providers: Observed meteorology: MeteoSwiss, WSL, IST-SUPSI Rainfall Radar: MeteoSwiss CLEPS, COSMOCH2 and COSMOCH7: MeteoSwiss MM5_15: FZK, IMK-IFU Observed discharge: Swiss Federal Office for Environment (FOEN), CONTICINO Basins: Verzasca_at_Lavertezzo, Ticino_at_Bellinzona, Maggia_at_Solduno, Tresa_at_Rocchetta, Toce_at_Candoglia, Ticino_at_Miorina, Thur_at_Andelfingen, Linth_at_Mollis Sub-Experiments: Runoff nowcasting, CLEPS, COSMOCH2 and COSMOCH7 at all basins MM5_15 and Rainradar only at Verzasca_at_Lavertezzo, Thur_at_Andelfingen, Linth_at_Mollis
The files contain vertical profiles of temperature and particle backscatter coefficient at 355 nm measured with the Rotational Raman Lidar of University of Hohenheim (UHOH RRL) during COPS 2007. The UHOH RRL was located at Hornisgrinde (COPS Supersite H) with other instruments. The temporal resolution of the particle-backscatter-coefficient data is 10 s in June 2007 and 13 s in July and August 2007, respectively. The spatial resolution is 37.5 m. For the temperature data of this release, the temporal and spatial resolution of the data is 5 minutes and 37.5 m, respectively. Missing values were added for data containing clouds and exceeding statistical measurement uncertainties of 2 K. Scanning data, data with higher resolution, data of higher altitudes, or data of measurement days which are not published within this release are available on request. See pdf summary in entry 'cops_suph_rlidar_info_1' for further information.
The files contain vertical profiles of absolute humidity and backscatter signals at 820 nm measured with the Water Vapor Differential Absorption Lidar of University of Hohenheim (UHOH DIAL) during COPS 2007. The UHOH DIAL was located at Hornisgrinde (COPS Supersite H) with other instruments. The backscatter signals are offline backscatter data multiplied with range squared in arbitrary units. These data show aerosols and clouds above the lidar. The temporal and spatial resolution of these data is 10 s and 15 m, respectively. For the humidity data (in g/m**-3) of this release, the temporal and spatial resolution is the same but with a 150-m-long weighting function. Data with higher resolution, data of higher altitudes, or data of measurement days which are not published within this release are available on request. See pdf summary in entry 'cops_suph_rlidar_info_1' for further information.
Profiles of the 35 GHz cloud radar MIRA36-S at COPS-Supersite Hornisgrinde. Containing reflectivity, radial Doppler velocity, spectral width and LDR (linear depolarisation ratio). Different scan modi are possible during one day. See more information on measurement times/scan modi in entry "cops_suph_cradar_info_1". Data available from 01.06.2007 to 06.08.2007 and 24.08.2007 to 31.08.2007.
Lidar data of 2mu Doppler Lidar run by FZK/IMK-TRO at COPS-Supersite Hornisgrinde. The windtracer is a commercial Doppler Lidar from LMCT. It can be operated in scanning and slant path mode. The data is direct output of the Real Time Lidar Data Processing Unit containing UTC, scanner position, rangegates and measured line_of_sight_velocity, signal to noise ratio (SNR), and aerosol backscatter signal derived from SNR. The wind profile is calculated automatically using VAD algorithm for 10 minutes intervals. No manual quality control is applied.