From 1 - 10 / 49
  • RCM forcing data from the 1st realisation (r1i1p1f1) of the CMIP6/ScenarioMIP experiment ssp126, conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp126: SSP-based RCP scenario with low radiative forcing by the end of the century. Following approximately RCP2.6 global forcing pathway with SSP1 socioeconomic conditions. Radiative forcing reaches a level of 2.6 W/m2 in 2100. Concentration-driven.

  • RCM forcing data from the 2nd realisation (r2i1p1f1) of the CMIP6/ScenarioMIP experiment ssp126, conducted with the MPI-ESM1-2-HR on the Cray supercomputer of the DWD Offenbach. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp126: SSP-based RCP scenario with low radiative forcing by the end of the century. Following approximately RCP2.6 global forcing pathway with SSP1 socioeconomic conditions. Radiative forcing reaches a level of 2.6 W/m2 in 2100. Concentration-driven.

  • RCM forcing data from the 20 realisations (r11i1p1f1-r30i1p1f1) of the CMIP6/ScenarioMIP experiment ssp126, conducted with the MPI-ESM1-2-LR on the Mistral supercomputer of the DKRZ. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp126: SSP-based RCP scenario with low radiative forcing by the end of the century. Following approximately RCP2.6 global forcing pathway with SSP1 socioeconomic conditions. Radiative forcing reaches a level of 2.6 W/m2 in 2100. Concentration-driven.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1-HR.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CNRM-CM6-1-HR climate model, released in 2017, includes the following components: aerosol: prescribed monthly fields computed by TACTIC_v2 scheme, atmos: Arpege 6.3 (T359; Gaussian Reduced with 181724 grid points in total distributed over 360 latitude circles (with 720 grid points per latitude circle between 32.2degN and 32.2degS reducing to 18 grid points per latitude circle at 89.6degN and 89.6degS); 91 levels; top level 78.4 km), atmosChem: OZL_v2, land: Surfex 8.0c, ocean: Nemo 3.6 (eORCA025, tripolar primarily 1/4deg; 1442 x 1050 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: Gelato 6.1. The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse 31057, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse 31057, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NCC.NorESM2-MM.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The NorESM2-MM (medium atmosphere-medium ocean resolution, GHG concentration driven) climate model, released in 2017, includes the following components: aerosol: OsloAero, atmos: CAM-OSLO (1 degree resolution; 288 x 192; 32 levels; top level 3 mb), atmosChem: OsloChemSimp, land: CLM, landIce: CISM, ocean: MICOM (1 degree resolution; 360 x 384; 70 levels; top grid cell minimum 0-2.5 m [native model uses hybrid density and generic upper-layer coordinate interpolated to z-level for contributed data]), ocnBgchem: HAMOCC, seaIce: CICE. The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CMCC.CMCC-ESM2.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CMCC-ESM2 climate model, released in 2017, includes the following components: aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), ocnBgchem: BFM5.2, seaIce: CICE4.0. The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.INM.INM-CM4-8.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The INM-CM4-8 climate model, released in 2016, includes the following components: aerosol: INM-AER1, atmos: INM-AM4-8 (2x1.5; 180 x 120 longitude/latitude; 21 levels; top level sigma = 0.01), land: INM-LND1, ocean: INM-OM5 (North Pole shifted to 60N, 90E; 360 x 318 longitude/latitude; 40 levels; sigma vertical coordinate), seaIce: INM-ICE1. The model was run by the Institute for Numerical Mathematics, Russian Academy of Science, Moscow 119991, Russia (INM) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NCAR.CESM2.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CESM2 climate model, released in 2018, includes the following components: aerosol: MAM4 (same grid as atmos), atmos: CAM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 32 levels; top level 2.25 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320x384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean). The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Barrierefreiheit | Datenschutz | Impressum