RCM forcing data from 2 realisations (r*i1p1f1) of the CMIP6/ScenarioMIP experiment ssp245, conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp245: SSP-based RCP scenario with medium radiative forcing by the end of the century. Following approximately RCP4.5 global forcing pathway with SSP2 socioeconomic conditions. Radiative forcing reaches a level of 4.5 W/m2 in 2100. Concentration-driven.
nuArctic aims at increasing our understanding of the remineralization of nutrients and carbon in the Arctic Ocean and its feedbacks with the Earth System, i.e. the capacity of the Arctic Ocean to be productive and to act as a carbon sink into the future. To do so, the project is proposing modeling advances to increase the robustness of model projections. This project includes global model simulations with the global multi-resolution Finite Volume Sea Ice-Ocean Model (FESOM version 2.1) coupled to the Regulated Ecosystem Model (REcoM version 3, Gürses et al. 2024). For this project, model simulations include a representation of terrigenous inputs from both rivers and coastal erosion and were run from 1970-2100 on a model grid with eddy-permitting (4.5 km) resolution at pan-Arctic scale. The ocean-only model simulations were forced at the ocean surface with 3-hourly atmospheric output from the AWI Climate Model (Semmler et al. 2020). The project includes model experiments under four “Shared Socioeconomic Pathways” emission scenarios, a control run and sensitivity experiments. This work lead to the publication of Oziel et al. 2025 ("Climate change and terrigenous inputs decrease the efficiency of the future Arctic Ocean’s biological carbon pump » in 2025 in Nature Climate Change) which comprises a detailed description of the methods, model experiments and setups but also a publication of the source code and post-processing scripts (Oziel, 2024).
These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MPI-M.MPI-ESM1-2-LR.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
MPI-ESM1-2-LR’s CMIP6 CovidMIP baseline simulations are based on simulations forced with CO2 emissions allowing interactive carbon cycle. The baseline simulations (ssp245-cov-baseline, publish here) is a reference to the CovidMIP simulations (ssp245-covid, ssp245-cov-fossil, ssp245-cov-strgreen, and ssp245-cov-modgreen, published under CMIP6 CovidMIP) to investigate the effects of COVID-19 induced emission reductions on global carbon cycle, climate change and feedbacks. As presented in Jones et al. (2021), the radiative and climate responses of MPI-ESM1-2-LR are within the range of multi-model simulation results. have 10 ensemble members of the simulation named from r1i1p1f99 to r10i1p1f99. Here f99 is used in the file name *r*i1p1f99* of all CovidMIP simulations because of the updated aerosol forcing (Fiedler et al. 2021). Fiedler, S.; Wyser, K.; Rogelj, J. & van Noije, T. (2021): Radiative effects of reduced aerosol emissions during the COVID-19 pandemic and the future recovery, Atmospheric Research, 264, 105866, https://doi.org/10.1016/j.atmosres.2021.105866 Jones, C. D., Hickman, J. E., Rumbold, S. T., Walton, J., Lamboll, R. D., Skeie, R. B., ... & Ziehn, T. (2021). The climate response to emissions reductions due to COVID‐19: Initial results from CovidMIP. Geophysical research letters, 48(8), e2020GL091883.
RCM forcing data from 2 realisations (r*i1p1f1) of the CMIP6/ScenarioMIP experiment ssp245, conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp245: SSP-based RCP scenario with medium radiative forcing by the end of the century. Following approximately RCP4.5 global forcing pathway with SSP2 socioeconomic conditions. Radiative forcing reaches a level of 4.5 W/m2 in 2100. Concentration-driven.
These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.DKRZ.MPI-ESM1-2-HR.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Deutsches Klimarechenzentrum, Hamburg 20146, Germany (DKRZ) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NCAR.CESM2.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CESM2 climate model, released in 2018, includes the following components: aerosol: MAM4 (same grid as atmos), atmos: CAM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 32 levels; top level 2.25 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320x384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean). The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NIMS-KMA.KACE-1-0-G.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The KACE1.0-GLOMAP climate model, released in 2018, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: MOM4p1 (tripolar primarily 1deg; 360 x 200 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE-HadGEM3-GSI8 (tripolar primarily 1deg; 360 x 200 longitude/latitude). The model was run by the National Institute of Meteorological Sciences/Korea Meteorological Administration, Climate Research Division, Seoho-bukro 33, Seogwipo-si, Jejudo 63568, Republic of Korea (NIMS-KMA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.
These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1-HR.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CNRM-CM6-1-HR climate model, released in 2017, includes the following components: aerosol: prescribed monthly fields computed by TACTIC_v2 scheme, atmos: Arpege 6.3 (T359; Gaussian Reduced with 181724 grid points in total distributed over 360 latitude circles (with 720 grid points per latitude circle between 32.2degN and 32.2degS reducing to 18 grid points per latitude circle at 89.6degN and 89.6degS); 91 levels; top level 78.4 km), atmosChem: OZL_v2, land: Surfex 8.0c, ocean: Nemo 3.6 (eORCA025, tripolar primarily 1/4deg; 1442 x 1050 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: Gelato 6.1. The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse 31057, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse 31057, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.