From 1 - 10 / 41
  • RCM forcing data from 10 realisations (r*i1p1f1) of the CMIP6/ScenarioMIP experiment ssp370, conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp370: Gap: Baseline scenario with a medium to high radiative forcing by the end of century. Following approximately RCP7.0 global forcing pathway with SSP3 socioeconomic conditions. Radiative forcing reaches a level of 7.0 W/m2 in 2100. Concentration-driven.

  • RCM forcing data from the 20 realisations (r11i1p1f1-r30i1p1f1) of the CMIP6/ScenarioMIP experiment ssp370, conducted with the MPI-ESM1-2-LR on the Mistral supercomputer of the DKRZ. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp370: Gap: Baseline scenario with a medium to high radiative forcing by the end of century. Following approximately RCP7.0 global forcing pathway with SSP3 socioeconomic conditions. Radiative forcing reaches a level of 7.0 W/m2 in 2100. Concentration-driven.

  • RCM forcing data from 10 realisations (r*i1p1f1) of the CMIP6/ScenarioMIP experiment ssp370, conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp370: Gap: Baseline scenario with a medium to high radiative forcing by the end of century. Following approximately RCP7.0 global forcing pathway with SSP3 socioeconomic conditions. Radiative forcing reaches a level of 7.0 W/m2 in 2100. Concentration-driven.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MPI-M.MPI-ESM1-2-LR.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.IPSL.IPSL-CM6A-LR.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The IPSL-CM6A-LR climate model, released in 2017, includes the following components: atmos: LMDZ (NPv6, N96; 144 x 143 longitude/latitude; 79 levels; top level 80000 m), land: ORCHIDEE (v2.0, Water/Carbon/Energy mode), ocean: NEMO-OPA (eORCA1.3, tripolar primarily 1deg; 362 x 332 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: NEMO-PISCES, seaIce: NEMO-LIM3. The model was run by the Institut Pierre Simon Laplace, Paris 75252, France (IPSL) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CMCC.CMCC-CM2-SR5.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CMCC-CM2-SR5 climate model, released in 2016, includes the following components: aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), seaIce: CICE4.0. The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MOHC.UKESM1-0-LL.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The UKESM1.0-N96ORCA1 climate model, released in 2018, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), atmosChem: UKCA-StratTrop, land: JULES-ES-1.0, ocean: NEMO-HadGEM3-GO6.0 (eORCA1 tripolar primarily 1 deg with meridional refinement down to 1/3 degree in the tropics; 360 x 330 longitude/latitude; 75 levels; top grid cell 0-1 m), ocnBgchem: MEDUSA2, seaIce: CICE-HadGEM3-GSI8 (eORCA1 tripolar primarily 1 deg; 360 x 330 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NCAR.CESM2-WACCM.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CESM2-WACCM climate model, released in 2018, includes the following components: aerosol: MAM4 (same grid as atmos), atmos: WACCM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 70 levels; top level 4.5e-06 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320 x 384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean). The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CCCma.CanESM5-CanOE.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CanESM5-CanOE climate model, released in 2019, includes the following components: aerosol: interactive, atmos: CanAM5 (T63L49 native atmosphere, T63 Linear Gaussian Grid; 128 x 64 longitude/latitude; 49 levels; top level 1 hPa), atmosChem: specified oxidants for aerosols, land: CLASS3.6/CTEM1.2, landIce: specified ice sheets, ocean: NEMO3.4.1 (ORCA1 tripolar grid, 1 deg with refinement to 1/3 deg within 20 degrees of the equator; 361 x 290 longitude/latitude; 45 vertical levels; top grid cell 0-6.19 m), ocnBgchem: Canadian Ocean Ecosystem (CanOE) with OMIP prescribed carbon chemistry, seaIce: LIM2. The model was run by the Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC V8P 5C2, Canada (CCCma) in native nominal resolutions: aerosol: 500 km, atmos: 500 km, atmosChem: 500 km, land: 500 km, landIce: 500 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

Barrierefreiheit | Datenschutz | Impressum