From 1 - 10 / 51
  • RCM forcing data from the 1st realisation (r1i1p1f1) of the CMIP6/ScenarioMIP experiment ssp585, conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp585: SSP-based RCP scenario with high radiative forcing by the end of the century. Following approximately RCP8.5 global forcing pathway with SSP5 socioeconomic conditions. Radiative forcing reaches a level of 8.5 W/m2 in 2100. Concentration-driven.

  • RCM forcing data from the 2nd realisation (r2i1p1f1) of the CMIP6/ScenarioMIP experiment ssp585, conducted with the MPI-ESM1-2-HR on the Cray supercomputer of the DWD Offenbach. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp585: SSP-based RCP scenario with high radiative forcing by the end of the century. Following approximately RCP8.5 global forcing pathway with SSP5 socioeconomic conditions. Radiative forcing reaches a level of 8.5 W/m2 in 2100. Concentration-driven.

  • RCM forcing data from the 20 realisations (r11i1p1f1-r30i1p1f1) of the CMIP6/ScenarioMIP experiment ssp585, conducted with the MPI-ESM1-2-LR on the Mistral supercomputer of the DKRZ. The experiment covers the years 2015 to 2100 and branches from realisations of the CMIP6/CMIP historical experiment. The file format is gzip-compressed GRIB (*.grb.gz). ScenarioMIP website: https://cmip.ucar.edu/scenario-mip ScenarioMIP paper: https://doi.org/10.5194/gmd-9-3461-2016 Experiment description ssp585: SSP-based RCP scenario with high radiative forcing by the end of the century. Following approximately RCP8.5 global forcing pathway with SSP5 socioeconomic conditions. Radiative forcing reaches a level of 8.5 W/m2 in 2100. Concentration-driven.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CCCma.CanESM5.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CanESM5 climate model, released in 2019, includes the following components: aerosol: interactive, atmos: CanAM5 (T63L49 native atmosphere, T63 Linear Gaussian Grid; 128 x 64 longitude/latitude; 49 levels; top level 1 hPa), atmosChem: specified oxidants for aerosols, land: CLASS3.6/CTEM1.2, landIce: specified ice sheets, ocean: NEMO3.4.1 (ORCA1 tripolar grid, 1 deg with refinement to 1/3 deg within 20 degrees of the equator; 361 x 290 longitude/latitude; 45 vertical levels; top grid cell 0-6.19 m), ocnBgchem: Canadian Model of Ocean Carbon (CMOC); NPZD ecosystem with OMIP prescribed carbonate chemistry, seaIce: LIM2. The model was run by the Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC V8P 5C2, Canada (CCCma) in native nominal resolutions: aerosol: 500 km, atmos: 500 km, atmosChem: 500 km, land: 500 km, landIce: 500 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.INM.INM-CM4-8.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The INM-CM4-8 climate model, released in 2016, includes the following components: aerosol: INM-AER1, atmos: INM-AM4-8 (2x1.5; 180 x 120 longitude/latitude; 21 levels; top level sigma = 0.01), land: INM-LND1, ocean: INM-OM5 (North Pole shifted to 60N, 90E; 360 x 318 longitude/latitude; 40 levels; sigma vertical coordinate), seaIce: INM-ICE1. The model was run by the Institute for Numerical Mathematics, Russian Academy of Science, Moscow 119991, Russia (INM) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.INM.INM-CM5-0.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The INM-CM5-0 climate model, released in 2016, includes the following components: aerosol: INM-AER1, atmos: INM-AM5-0 (2x1.5; 180 x 120 longitude/latitude; 73 levels; top level sigma = 0.0002), land: INM-LND1, ocean: INM-OM5 (North Pole shifted to 60N, 90E. 0.5x0.25; 720 x 720 longitude/latitude; 40 levels; vertical sigma coordinate), seaIce: INM-ICE1. The model was run by the Institute for Numerical Mathematics, Russian Academy of Science, Moscow 119991, Russia (INM) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.IPSL.IPSL-CM6A-LR.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The IPSL-CM6A-LR climate model, released in 2017, includes the following components: atmos: LMDZ (NPv6, N96; 144 x 143 longitude/latitude; 79 levels; top level 80000 m), land: ORCHIDEE (v2.0, Water/Carbon/Energy mode), ocean: NEMO-OPA (eORCA1.3, tripolar primarily 1deg; 362 x 332 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: NEMO-PISCES, seaIce: NEMO-LIM3. The model was run by the Institut Pierre Simon Laplace, Paris 75252, France (IPSL) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.EC-Earth-Consortium.EC-Earth3-CC.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The EC-Earth3-CC climate model, released in 2019, includes the following components: atmos: IFS cy36r4 (TL255, linearly reduced Gaussian grid equivalent to 512 x 256 longitude/latitude; 91 levels; top level 0.01 hPa), atmosChem: TM5 (3 x 2 degrees; 120 x 90 longitude/latitude; 34 levels; top level: 0.1 hPa), land: HTESSEL (land surface scheme built in IFS) and LPJ-GUESS v4, ocean: NEMO3.6 (ORCA1 tripolar primarily 1 degree with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 75 levels; top grid cell 0-1 m), ocnBgchem: PISCES v2, seaIce: LIM3. The model was run by the AEMET, Spain; BSC, Spain; CNR-ISAC, Italy; DMI, Denmark; ENEA, Italy; FMI, Finland; Geomar, Germany; ICHEC, Ireland; ICTP, Italy; IDL, Portugal; IMAU, The Netherlands; IPMA, Portugal; KIT, Karlsruhe, Germany; KNMI, The Netherlands; Lund University, Sweden; Met Eireann, Ireland; NLeSC, The Netherlands; NTNU, Norway; Oxford University, UK; surfSARA, The Netherlands; SMHI, Sweden; Stockholm University, Sweden; Unite ASTR, Belgium; University College Dublin, Ireland; University of Bergen, Norway; University of Copenhagen, Denmark; University of Helsinki, Finland; University of Santiago de Compostela, Spain; Uppsala University, Sweden; Utrecht University, The Netherlands; Vrije Universiteit Amsterdam, the Netherlands; Wageningen University, The Netherlands. Mailing address: EC-Earth consortium, Rossby Center, Swedish Meteorological and Hydrological Institute/SMHI, SE-601 76 Norrkoping, Sweden (EC-Earth-Consortium) in native nominal resolutions: atmos: 100 km, atmosChem: 250 km, land: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

  • These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.FIO-QLNM.FIO-ESM-2-0.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The FIO-ESM 2.0 climate model, released in 2018, includes the following components: aerosol: Prescribed monthly fields, atmos: CAM4 (0.9x1.25 finite volume grid; 192 x 288 longitude/latitude; 26 levels; top level ~2 hPa), land: CLM4.0 (same grid at atmos), ocean: POP2-W (POP2 coupled with MASNUM surface wave model, Displaced Pole; 320 x 384 longitude/latitude; 60 levels; top grid cell 0-10 m), seaIce: CICE4.0 (same grid as ocean). The model was run by the FIO (First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China), QNLM (Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China) (FIO-QLNM) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.