Ensemble of MPI-ESM1-2-HR CMIP6 historical simulations with low-pass filtered solar and ozone variability (i.e., using a 33-years running-mean). The simulations are performed within the BMBF project "Solar contribution to climate change on decadal to centennial timescales" (SOLCHECK) of the "Role of the middle atmosphere in climate" (ROMIC II: https://romic2.iap-kborn.de/en/romic/strategy). The experimental setup is identical to the MPI-ESM1-2-HR historical CMIP6 simulations except for the solar and ozone variability.
Source code of the Max Planck Institute Earth System Model (MPI-ESM1.2) adopted to the project PRIMAVERA for the comparison of four different ocean vertical mixing schemes.
Ensemble of MPI-ESM1-2-HR CMIP6 historical simulations without solar and ozone variability (i.e., set to the year 1850). The simulations are performed within the BMBF project "Solar contribution to climate change on decadal to centennial timescales" (SOLCHECK) of the "Role of the middle atmosphere in climate" (ROMIC II: https://romic2.iap-kborn.de/en/romic/strategy). The experimental setup is identical to the MPI-ESM1-2-HR historical CMIP6 simulations except for the solar and ozone variability. Please refrain from using the following variables since their computations where either erroneous or do not comply with the CMIP6 protocol: Eyr_fracLut, 6hrPlevPt_sfcWind, Amon_mc, CFday_mc, CFmon_dmc, CFmon_smc, CFmon_mcd, CFmon_mcu, Omon_o2sat, Oyr_o2sat, Omon_uo, Omon_umo, Omon_hfx Omon_tauuo Technical details: Ensemble run on bullx B700 Mistral at DKRZ
The SRES data sets were published by the IPCC in 2000 and classified into four different scenario families (A1, A2, B1, B2). SRES_B2 storyline describes a world in which the emphasis is on local solutions to economic, social and enviromental sustainbility. The global population is increasing at a lower rate than A2. It has a intermediate level of economic development and a less rapid and more diverse technological change than in A1 and B1. The model consists of the atmospheric component which based on the weather forecast model of ECMWF. The atmospheric component is the standard model version of a 19-level hybrid sigma-pressure coordinate system. The ocean component is a model which computes with isopycnal coordinates. ECHAM4/OPYC3(http://ipcc-data.org/gcm/models/tar/echam4opyc3.html ). This data set is an enlargement of the IPCC data set and provides additional meteorological parameters. The run produces monthly averaged values of the variabeles. Changes of anthropogenic smissions of CO2, CH4, N2O and sulphur dioxide are prescribed according to the above mentioned scenario. The model run starts in 1990 from the results of the scenario run GSDIO (Experiment "EH4OPYC_22723GSDIO") which has been run with observed conditions for the time period 1860-1990.
This dataset contains reconstructions of land use and land cover from AD 800 to 1992 in global coverage at 30 minute resolution. After AD 1700, the data is based on Ramankutty and Foley (1999), Foley et al. (2003) and Klein Goldewijk (2001); for earlier times, land use is estimated with a country-based method that uses national population data (McEvedy and Jones, 1978) as a proxy for agricultural activity. For each year, a map is provided that contains 14 fields. Each field holds the fraction the respective vegetation type covers in the total grid cell (0-1). The vegetation types comprise three human land use types (crop, C3 pasture and C4 pasture) and 11 natural vegetation types (based on the potential vegetation map of Ramankutty and Foley, 1999). For the time period prior to AD 1700 two additional land cover scenarios are provided (scenmin and scenmax). They quantify the uncertainties associated with this approach, through technological progress in agriculture and uncertainties in population estimates. The additional datasets combine the known uncertainties in a way to give the most extreme range for possible estimates of land use area for each year before 1700. The datasets thus do not represent consistent time series of plausible alternative scenarios, but indicate, for each year, a maximum range outside which estimates of land use area are unrealistic. See citations and references for details. Vegetation types: 1 Tropical evergreen forest 2 Tropical deciduous forest 3 Temperate evergreen broadleaf forest 4 Temperate/boreal deciduous broadleaf forest 5 Temperate/boreal evergreen conifers 6 Temperate/boreal deciduous conifers 7 Raingreen shrubs 8 Summergreen shrubs 9 C3 natural grasses 10 C4 natural grasses 11 Tundra 12 Crop 13 C3 pasture 14 C4 pasture
decadal2000 is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 1.1 decadal2000 (1.1 10-year hindcast/prediction initialized in year 2000) - Version 1: The atmospheric composition (and other conditions) should be prescribed as in the historical run (expt. 3.2) and the RCP4.5 scenario (expt. 4.1) of the long-term suite of experiments. Ocean initial conditions should be in some way representative of the observed anomalies or full fields for the start date. Land, sea-ice and atmosphere initial conditions are left to the discretion of each group. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .
RCM forcing data from three realisations of the CMIP5 experiment decadal1980. The decadal1980 experiment covers the years 1981-2010. The members start from different states in late 1980 (1 day apart) of an assimilated historical run (realisation 1).
lgm is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. lgm (3.5 Last glacial maximum) - Version 2: Consistent with PMIP (Paleo Model Intercomparison Project) requirements. Impose Last Glacial Maximum (21 kyrs ago) conditions including ice sheets and atmospheric concentrations of well-mixed greenhouse gasses. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax ( https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf ) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc .
'abrupt4xco2' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 6.3 abrupt4xco2 (6.3 Abrupt 4XCO2) - Version 1: Impose an instantaneous quadrupling of CO2, then hold fixed. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.
'historical' is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 (https://pcmdi.llnl.gov/mips/cmip5). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the AR5 as well as others that extend beyond the AR5. 3.2 historical (3.2 Historical) - Version 1: Simulation of recent past (1850 to 2005). Impose changing conditions (consistent with observations). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Entry name/title of data are specified according to the Data Reference Syntax (https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax.pdf) as activity/product/institute/model/experiment/frequency/modeling realm/MIP table/ensemble member/version number/variable name/CMOR filename.nc.