MODES applies three-dimensional linear wave theory for the decomposition of global circulation in terms of normal-mode functions (NMFs). NMFs used by MODES are eigensolutions of the linearized primitive equations in the terrain-following sigma coordinates and were derived by Kasahara and Puri (1981, Mon. Wea. Rev). The available data are three data sets (40 years), calculated from ERA5 reanalyses by modal filtering of certain wave components, here Kelvin waves (KW), Mixed Rossby-gravity waves (MRG) and Rossby wave n=1 (Rosn1). Near-realtime modal decompositions of ECMWF deterministic forecasts, using the same tool (MODES) as has been used for the generation of the dataset are under this URL: https://modes.cen.uni-hamburg.de/
NARVAL-North: Measurements of microwave radiometer brightness temperatures, radar reflectivity and linear depolarisation ratio, and dropsonde atmospheric profiles from aircraft campaign over mid-latitude Atlantic out of Iceland. Aim of the campaign was the observation of clouds associated with the cold sector of mid-latitude cyclones.
NARVAL-South: Measurements of microwave radiometer brightness temperatures, radar reflectivity and linear depolarisation ratio, and dropsonde atmospheric profiles from aircraft campaign over tropical Atlantic out of Barbados. Aim of the campaign was the observation of shallow convection in the trade wind region east of Barbados. website: http://www.mpimet.mpg.de/en/science/the-atmosphere-in-the-earth-system/working-groups/tropical-cloud-observation/halo/missions/
NARVAL2: Measurements of microwave radiometer brightness temperatures, radar reflectivity and linear depolarisation ratio, and dropsonde atmospheric profiles from aircraft campaign over tropical Atlantic out of Barbados. During this campaign, a broad range of states of convection were observed from suppressed and shallow convection in relatively dry surroundings to deep convection in the ITCZ. website: https://www.mpimet.mpg.de/en/science/the-atmosphere-in-the-earth-system/working-groups/tropical-cloud-observation/halo/missions/
NAWDEX: Measurements of microwave radiometer brightness temperatures, radar reflectivity and linear depolarisation ratio, and dropsonde atmospheric profiles from aircraft campaign over mid-latitude Atlantic out of Iceland. The campaign explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft. Website: http://www.pa.op.dlr.de/nawdex/
CHELSA_v1.1 (http://chelsa-climate.org/) is a high resolution (30 arc sec, ~1 km) climate data set for the earth land surface areas. It includes monthly and annual mean temperature and precipitation patterns as well as derived bioclimatic and interannual parameters for the time period 1979-2013. CHELSA_v1.1 is based on a quasi-mechanistical statistical downscaling of the ERA interim global circulation model (http://www.ecmwf.int/en/research/climate-reanalysis/era-interim) with a GPCC (https://www.dwd.de/EN/ourservices/gpcc/gpcc.html) and GHCN (https://www.ncdc.noaa.gov/ghcnm/) bias correction.
CHELSA_v1.0 (http://chelsa-climate.org/) is a high resolution (30 arc sec, ~1 km) climate data set for the earth land surface areas. Version 1.0 is a first release. It includes monthly and annual mean temperature and precipitation patterns for the time period 1979-2013. CHELSA_v1 is based on a quasi-mechanistical statistical downscaling of the ERA interim global circulation model (http://www.ecmwf.int/en/research/climate-reanalysis/era-interim) with a GPCC (https://www.dwd.de/EN/ourservices/gpcc/gpcc.html) and GHCN (https://www.ncdc.noaa.gov/ghcnm/) bias correction. Specifications: High resolution (30 arcsec, ~1 km) Precipitation & Temperature Monthly coverage 1979 - 2013 Incorporation of topoclimate (e.g. orographic rainfall & wind fields). Downscaled ERA-interim model. Allows calculation of derived parameters based on monthly values such as length of dry periods etc.
Products of liquid water path (LWP), rain water path (RWP) and integrated water vapor (IWV, also called precipitable water vapor (PWV)) are retrieved from microwave radiometer observations with auxiliary measurements from backscatter lidar and cloud radar. The nadir measurements were taken by the German High Altitude and Long range research aircraft (HALO) during the Next generation Advanced Remote sensing for VALidation campaign South (NARVAL-South) in December 2013. Products are provided over tropical Atlantic east of Barbados. This experiment provides column integrated quantities as seen from satellite perspective but with higher spatially resolution (about 1 km footprint) than available from microwave satellites.
Products of liquid water path (LWP), rain water path (RWP) and integrated water vapor (IWV, also called precipitable water vapor (PWV)) are retrieved from microwave radiometer observations with auxiliary measurements from backscatter lidar and cloud radar. The nadir measurements were taken by the German High Altitude and Long range research aircraft (HALO) during the Next generation Advanced Remote sensing for VALidation campaign 2 (NARVAL2) in August 2016. Products are provided over tropical Atlantic east of Barbados. This experiment provides column integrated quantities as seen from satellite perspective but with higher spatially resolution (about 1 km footprint) than available from microwave satellites.
This is the first version (v1.0) of the hydrographic part of the "Baltic and North Sea Climatology (BNSC)". The parameters provided here are water temperature and salinity on 105 depth levels. The data product comprises the time period from 1873-2015 and is based on more than one million observational profiles, which were obtained from several different data sources in the region of the Baltic, the North Sea and adjacent areas of the North Atlantic Ocean (15°W-30°E, 47°N-66°N). Intersection of observational data from different data sources is avoided and the in situ data were objected to an elaborate automatic quality control to identify erroneous observations that would bias the data product. Additionally, a correction of the temporal sampling error was applied to minimize the impact of the temporal distribution of the observations on the created temporal mean fields. The data product consists of gridded mean fields of water temperature and salinity. The spatial resolution is 0.25° in meridional and zonal direction. The depth levels are irregularly distributed: for the depth interval from 0 to 50m the distance between the single depth levels is 5m. Below 50m, the distance increases progressively by 1m to the last depth level of 4985m. The dimensions of the data product are 180*76*105 (longitude, latitude, depth). The BNSC climatology consists, on the one hand, of time series of monthly and annual mean values of the hydrographic parameters as fields of box averages. Grid boxes that show no observations are left empty. Based on these time series, decadal monthly mean fields are created for the decades 1956-1965, 1966-1975, 1976-1985, 1986-1995, 1996-2005, 2006-2015 as another part of the data product. Again, gaps remain in observational data-void regions. The third part of the data product results from above mentioned decadal mean fields: horizontally interpolated fields by application of the method of objective analysis. Consequently, this subset does not contain gaps. Available parameters: box averages: monthly and annual mean, resp. standard deviation, number of observations decadal box averages: decadal monthly mean, resp. standard deviation, mean year, standard deviation to mean year, number of years decadal interpolated mean: interpolated monthly mean, absolute median deviation, number of bins, first guess, relative interpolation error, mean year, mean distance The products are publicly available at the ICDC portal ( https://icdc.cen.uni-hamburg.de/1/daten/ocean/bnsc/)