From 1 - 10 / 67
  • MODES applies three-dimensional linear wave theory for the decomposition of global circulation in terms of normal-mode functions (NMFs). NMFs used by MODES are eigensolutions of the linearized primitive equations in the terrain-following sigma coordinates and were derived by Kasahara and Puri (1981, Mon. Wea. Rev). The available data are three data sets (40 years), calculated from ERA5 reanalyses by modal filtering of certain wave components, here Kelvin waves (KW), Mixed Rossby-gravity waves (MRG) and Rossby wave n=1 (Rosn1). Near-realtime modal decompositions of ECMWF deterministic forecasts, using the same tool (MODES) as has been used for the generation of the dataset are under this URL: https://modes.cen.uni-hamburg.de/

  • NARVAL2: Measurements of microwave radiometer brightness temperatures, radar reflectivity and linear depolarisation ratio, and dropsonde atmospheric profiles from aircraft campaign over tropical Atlantic out of Barbados. During this campaign, a broad range of states of convection were observed from suppressed and shallow convection in relatively dry surroundings to deep convection in the ITCZ. website: https://www.mpimet.mpg.de/en/science/the-atmosphere-in-the-earth-system/working-groups/tropical-cloud-observation/halo/missions/

  • NAWDEX: Measurements of microwave radiometer brightness temperatures, radar reflectivity and linear depolarisation ratio, and dropsonde atmospheric profiles from aircraft campaign over mid-latitude Atlantic out of Iceland. The campaign explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft. Website: http://www.pa.op.dlr.de/nawdex/

  • NARVAL-South: Measurements of microwave radiometer brightness temperatures, radar reflectivity and linear depolarisation ratio, and dropsonde atmospheric profiles from aircraft campaign over tropical Atlantic out of Barbados. Aim of the campaign was the observation of shallow convection in the trade wind region east of Barbados. website: http://www.mpimet.mpg.de/en/science/the-atmosphere-in-the-earth-system/working-groups/tropical-cloud-observation/halo/missions/

  • NARVAL-North: Measurements of microwave radiometer brightness temperatures, radar reflectivity and linear depolarisation ratio, and dropsonde atmospheric profiles from aircraft campaign over mid-latitude Atlantic out of Iceland. Aim of the campaign was the observation of clouds associated with the cold sector of mid-latitude cyclones.

  • CHELSA_v1.0 (http://chelsa-climate.org/) is a high resolution (30 arc sec, ~1 km) climate data set for the earth land surface areas. Version 1.0 is a first release. It includes monthly and annual mean temperature and precipitation patterns for the time period 1979-2013. CHELSA_v1 is based on a quasi-mechanistical statistical downscaling of the ERA interim global circulation model (http://www.ecmwf.int/en/research/climate-reanalysis/era-interim) with a GPCC (https://www.dwd.de/EN/ourservices/gpcc/gpcc.html) and GHCN (https://www.ncdc.noaa.gov/ghcnm/) bias correction. Specifications: High resolution (30 arcsec, ~1 km) Precipitation & Temperature Monthly coverage 1979 - 2013 Incorporation of topoclimate (e.g. orographic rainfall & wind fields). Downscaled ERA-interim model. Allows calculation of derived parameters based on monthly values such as length of dry periods etc.

  • CHELSA_v1.1 (http://chelsa-climate.org/) is a high resolution (30 arc sec, ~1 km) climate data set for the earth land surface areas. It includes monthly and annual mean temperature and precipitation patterns as well as derived bioclimatic and interannual parameters for the time period 1979-2013. CHELSA_v1.1 is based on a quasi-mechanistical statistical downscaling of the ERA interim global circulation model (http://www.ecmwf.int/en/research/climate-reanalysis/era-interim) with a GPCC (https://www.dwd.de/EN/ourservices/gpcc/gpcc.html) and GHCN (https://www.ncdc.noaa.gov/ghcnm/) bias correction.

  • This is the Baltic and North Sea Climatology (BNSC) for the Baltic Sea and the North Sea in the range 47 ° N to 66 ° N and 15 ° W to 30 ° E. It is the follow-up project to the KNSC climatology. The climatology was first made available to the public in March 2018 by ICDC and is published here in a slightly revised version 2. It contains the monthly averages of mean air pressure at sea level, and air temperature, and dew point temperature at 2 meter height. It is available on a 1 ° x 1 ° grid for the period from 1950 to 2015. For the calculation of the mean values, all available quality-controlled data of the DWD (German Meteorological Service) of ship observations and buoy measurements were taken into account during this period. Additional dew point values were calculated from relative humidity and air temperature if available. Climatologies were calculated for the WMO standard periods 1951-1980, 1961-1990, 1971-2000 and 1981-2010 (monthly mean values). As a prerequisite for the calculation of the 30-year-climatology, at least 25 out of 30 (five-sixths) valid monthly means had to be present in the respective grid box. For the long-term climatology from 1950 to 2015, at least four-fifths valid monthly means had to be available. Two methods were used (in combination) to calculate the monthly averages, to account for the small number of measurements per grid box and their uneven spatial and temporal distribution: 1. For parameters with a detectable annual cycle in the data (air temperature, dew point temperature), a 2nd order polynomial was fitted to the data to reduce the variation within a month and reduce the uncertainty of the calculated averages. In addition, for the mean value of air temperature, the daily temperature cycle was removed from the data. In the case of air pressure, which has no annual cycle, in version 2 per month and grid box no data gaps longer than 14 days were allowed for the calculation of a monthly mean and standard deviation. This method differs from KNSC and BNSC version 1, where mean and standard deviation were calculated from 6-day windows means. 2. If the number of observations fell below a certain threshold, which was 20 observations per grid box and month for the air temperature as well as for the dew point temperature, and 500 per box and month for the air pressure, data from the adjacent boxes was used for the calculation. The neighbouring boxes were used in two steps (the nearest 8 boxes, and if the number was still below the threshold, the next sourrounding 16 boxes) to calculate the mean value of the center box. Thus, the spatial resolution of the parameters is reduced at certain points and, instead of 1 ° x 1 °, if neighboring values are taken into account, data from an area of 5 ° x 5 ° can also be considered, which are then averaged into a grid box value. This was especially used for air pressure, where the 24 values of the neighboring boxes were included in the averaging for most grid boxes. The mean value, the number of measurements, the standard deviation and the number of grid boxes used to calculate the mean values are available as parameters in the products. The calculated monthly and annual means were allocated to the centers of the grid boxes: Latitudes: 47.5, 48.5, ... Longitudes: -14.5, -13.5, … In order to remove any existing values over land, a land-sea mask was used, which is also provided in 1 ° x 1 ° resolution. In this version 2 of the BNSC, a slightly different database was used, than for the KNSC, which resulted in small changes (less than 1 K) in the means and standard deviations of the 2-meter air temperature and dew point temperature. The changes in mean sea level pressure values and the associated standard deviations are in the range of a few hPa, compared to the KNSC. The parameter names and units have been adjusted to meet the CF 1.6 standard.

  • OceanRAIN version 1.0, OceanRAIN-W - Water cycle components, 73 along-track parameters for 8 ships, 6.83 million minutes in total, temporally continuous data for each ship, 1-minute-resolution

  • An operational, single-polarized X-band weather radar (WRX) provides measurements in Hamburg’s city center since 2013. This local area weather radar (LAWR) is located on the rooftop of the high-rise building "Geomatikum" in Hamburg (HHG), which is the location of the Meteorological Institute of the Universität Hamburg. The radar operates at one beam elevation angle with a high temporal 30 s, range 60 m, and sampling 1° resolution refining observations of the German nationwide C-band radars within a 20 km scan radius. Several sources of radar-based errors were adjusted gradually improving the measurement variables, e.g. the radar calibration, alignment, attenuation, noise, non-meteorologial echoes. This experiment includes data sets of the equivalent radar reflectivity factor (dbz) in level 1 (without attenuation correction) and the rainfall rate (rr) in level 2 (applied attenuation correction). The WRX/LAWR HHG measurements were calibrated and evaluated with measurements of micro rain radars (MRR). With this high-quality and -resolution weather radar product, refined studies on the spatial and temporal scale of urban precipitation will be possible. For example, the data sets will be used for further hydrological research in an urban area within the project Sustainable Adaption Scenarios for Urban Areas – Water from Four Sides of the Cluster of Excellence Climate Climatic Change, and Society (CliCCS). This work was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany‘s Excellence Strategy – EXC 2037 'CLICCS - Climate, Climatic Change, and Society' – Project Number: 390683824, contribution to the Center for Earth System Research and Sustainability (CEN) of Universität Hamburg. Now a more recent version (Version 2) exists with the following changes: - We provide daily instead of hourly files to reduce the number of files for better data handling. For the days 23.09.2014, 12.03.2015, 09.06.2015, 05.07.2017, and 01.02.2018 there are two files to avoid additional time dependencies of variables because of changes in calibration or alignment parameters. - We changed the data type (double to int64) and the unit days since 1970-01-01 to seconds since 1970-01-01 of the time coordinate. - We changed the standard names / long names of the variables azimuth, range and ele. - We added the integer variable grid_mapping with the attributes grid_mapping_name ("radar_lidar_radial_scan"), latitude_of_projection_origin, longitude_of_projection_origin and height_of_projection_origin, as suggested by the CfRadial conventions. Since the grid_mapping variable provides the same information as the variables lat_center, lon_center and zsl_center, we removed them. We added the attribute grid_mapping to the variable rr and dbz.