From 1 - 10 / 12
  • RCM forcing data from the first realisation r1i1p1f1 of the CMIP6/CMIP DECK experiment amip (original name of the simulation "amip-HR"), conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 1979 to 2014. The file format is gzip-compressed GRIB (*.grb.gz). CMIP6 website: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 CMIP6 paper: https://www.geosci-model-dev.net/9/1937/2016/gmd-9-1937-2016.html Experiment description amip: An atmosphere only climate simulation using prescribed sea surface temperature and sea ice concentrations but with other conditions as in the Historical simulation.

  • RCM forcing data from 2 realisations (r2i1p1f1, r3i1p1f1) of the CMIP6/CMIP DECK experiment amip, conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 1979 to 2014. The two variants have been created by modulating the horizontal diffusion coefficient of the top model layer by a factor 1.00001 (amip_r2i1p1f1) and 0.99999 (amip_r3i1p1f1) for the year 1979. The file format is gzip-compressed GRIB (*.grb.gz). CMIP6 website: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 CMIP6 paper: https://www.geosci-model-dev.net/9/1937/2016/gmd-9-1937-2016.html Experiment description amip: An atmosphere only climate simulation using prescribed sea surface temperature and sea ice concentrations but with other conditions as in the Historical simulation.

  • RCM forcing data from 2 realisations (r2i1p1f1, r3i1p1f1) of the CMIP6/CMIP DECK experiment amip, conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 1979 to 2014. The two variants have been created by modulating the horizontal diffusion coefficient of the top model layer by a factor 1.00001 (amip_r2i1p1f1) and 0.99999 (amip_r3i1p1f1) for the year 1979. The file format is gzip-compressed GRIB (*.grb.gz). CMIP6 website: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 CMIP6 paper: https://www.geosci-model-dev.net/9/1937/2016/gmd-9-1937-2016.html Experiment description amip: An atmosphere only climate simulation using prescribed sea surface temperature and sea ice concentrations but with other conditions as in the Historical simulation.

  • RCM forcing data from the first realisation r1i1p1f1 of the CMIP6/CMIP DECK experiment amip (original name of the simulation "amip-HR"), conducted with the MPI-ESM1-2-HR on the Mistral supercomputer of the DKRZ. The experiment covers the years 1979 to 2014. The file format is gzip-compressed GRIB (*.grb.gz). CMIP6 website: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 CMIP6 paper: https://www.geosci-model-dev.net/9/1937/2016/gmd-9-1937-2016.html Experiment description amip: An atmosphere only climate simulation using prescribed sea surface temperature and sea ice concentrations but with other conditions as in the Historical simulation.

  • The transient simulation was performed with the Max Planck Institute for Meteorology Earth System Model version 1.2 in coarse resolution (MPI-ESM-CR). The model includes the spectral atmospheric model ECHAM6.3 at T31 horizontal resolution (approx. 3.75°) and 31 vertical levels, the land surface vegetation model JSBACH3.2, and the primitive equation ocean model MPIOM1.6 with a nominal resolution of 3°. The applied setup was introduced in detail in Kapsch et al. (2021 and 2022). For the experiment, the model was integrated from a glacial state at 26 ka to the year 1950 with prescribed atmospheric greenhouse gas concentrations (Köhler et al., 2017) and insolation (Berger & Loutre, 1991). Ice sheets and surface topographies were prescribed from GLAC-1D (Tarasov et al., 2012) reconstructions. All forcing fields are updated every 10 years of the simulations and initiate changes in the topography, glacier mask, river pathways, ocean bathymetry, and land-sea mask. Meltwater from ice sheets is calculated as the temporal derivative of ice thickness at grid points covered by grounded ice sheets. The derived meltwater is then distributed by the hydrological discharge model and finally released into the ocean as freshwater. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations and bug fixes. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022). The current simulation refers to GLAC1D_P1 in Kapsch et al. (2022) and is significantly warmer during the glacial than model versions P2 and P3, indicating a weaker sensitivity to greenhouse gas changes. The glacial cooling over the North Atlantic is more realistic in P2 and P3 than in P1. P2 and P3 are also more sensitive to small changes in the meltwater forcing than P1. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations, bug fixes and forcing. These differences are described according to the CMIP6 nomenclature, where r denotes the realization, i the initialization method, p differences in the physics and f in the forcing. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022).

  • The transient simulation was performed with the Max Planck Institute for Meteorology Earth System Model version 1.2 in coarse resolution (MPI-ESM-CR). The model includes the spectral atmospheric model ECHAM6.3 at T31 horizontal resolution (approx. 3.75°) and 31 vertical levels, the land surface vegetation model JSBACH3.2, and the primitive equation ocean model MPIOM1.6 with a nominal resolution of 3°. The applied setup was introduced in detail in Kapsch et al. (2021 and 2022). For the experiment, the model was integrated from a glacial state at 26 ka to the year 1950 with prescribed atmospheric greenhouse gas concentrations (Köhler et al., 2017) and insolation (Berger & Loutre, 1991). Ice sheets and surface topographies were prescribed from ICE-6G (Peltier et al., 2015) reconstructions. All forcing fields are updated every 10 years of the simulations and initiate changes in the topography, glacier mask, river pathways, ocean bathymetry, and land-sea mask. Meltwater from ice sheets is calculated as the temporal derivative of ice thickness at grid points covered by grounded ice sheets. The derived meltwater is then distributed by the hydrological discharge model and finally released into the ocean as freshwater. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations and bug fixes. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022). The current simulation refers to ICE6G_P1 in Kapsch et al. (2022) and is significantly warmer during the glacial than model versions P2 and P3, indicating a weaker sensitivity to greenhouse gas changes. The glacial cooling over the North Atlantic is more realistic in P2 and P3 than in P1. P2 and P3 are also more sensitive to small changes in the meltwater forcing than P1. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations, bug fixes and forcing. These differences are described according to the CMIP6 nomenclature, where r denotes the realization, i the initialization method, p differences in the physics and f in the forcing. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022).

  • The transient simulation was performed with the Max Planck Institute for Meteorology Earth System Model version 1.2 in coarse resolution (MPI-ESM-CR). The model includes the spectral atmospheric model ECHAM6.3 at T31 horizontal resolution (approx. 3.75°) and 31 vertical levels, the land surface vegetation model JSBACH3.2, and the primitive equation ocean model MPIOM1.6 with a nominal resolution of 3°. The applied setup was introduced in detail in Kapsch et al. (2021 and 2022). For the experiment, the model was integrated from a glacial state at 26 ka to the year 1950 with prescribed atmospheric greenhouse gas concentrations (Köhler et al., 2017) and insolation (Berger & Loutre, 1991). Ice sheets and surface topographies were prescribed from GLAC-1D (Tarasov et al., 2012) reconstructions. All forcing fields are updated every 10 years of the simulations and initiate changes in the topography, glacier mask, river pathways, ocean bathymetry, and land-sea mask. Meltwater from ice sheets is calculated as the temporal derivative of ice thickness at grid points covered by grounded ice sheets. The derived meltwater is then distributed by the hydrological discharge model and finally released into the ocean as freshwater. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations and bug fixes. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022). The current simulation refers to GLAC1D_P2 in Kapsch et al. (2022) and is significantly colder during the glacial than model version P1, indicating a stronger sensitivity to greenhouse gas changes. The glacial cooling over the North Atlantic is more realistic in P2 and P3 than in P1. P2 and P3 are also more sensitive to small changes in the meltwater forcing than P1. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations, bug fixes and forcing. These differences are described according to the CMIP6 nomenclature, where r denotes the realization, i the initialization method, p differences in the physics and f in the forcing. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022).

  • The transient simulation was performed with the Max Planck Institute for Meteorology Earth System Model version 1.2 in coarse resolution (MPI-ESM-CR). The model includes the spectral atmospheric model ECHAM6.3 at T31 horizontal resolution (approx. 3.75°) and 31 vertical levels, the land surface vegetation model JSBACH3.2, and the primitive equation ocean model MPIOM1.6 with a nominal resolution of 3°. The applied setup was introduced in detail in Kapsch et al. (2021 and 2022). For the experiment, the model was integrated from a glacial state at 26 ka to the year 1950 with prescribed atmospheric greenhouse gas concentrations (Köhler et al., 2017) and insolation (Berger & Loutre, 1991). Ice sheets and surface topographies were prescribed from ICE-6G (Peltier et al., 2015) reconstructions. All forcing fields are updated every 10 years of the simulations and initiate changes in the topography, glacier mask, river pathways, ocean bathymetry, and land-sea mask. Meltwater from ice sheets is calculated as the temporal derivative of ice thickness at grid points covered by grounded ice sheets. The derived meltwater is then distributed by the hydrological discharge model and finally released into the ocean as freshwater. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations and bug fixes. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022). The current simulation refers to ICE6G_P2 in Kapsch et al. (2022) and is significantly colder during the glacial than model version P1, indicating a stronger sensitivity to greenhouse gas changes. The glacial cooling over the North Atlantic is more realistic in P2 and P3 than in P1. P2 and P3 are also more sensitive to small changes in the meltwater forcing than P1. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations, bug fixes and forcing. These differences are described according to the CMIP6 nomenclature, where r denotes the realization, i the initialization method, p differences in the physics and f in the forcing. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022).

  • The transient simulation was performed with the Max Planck Institute for Meteorology Earth System Model version 1.2 in coarse resolution (MPI-ESM-CR). The model includes the spectral atmospheric model ECHAM6.3 at T31 horizontal resolution (approx. 3.75°) and 31 vertical levels, the land surface vegetation model JSBACH3.2, and the primitive equation ocean model MPIOM1.6 with a nominal resolution of 3°. The applied setup was introduced in detail in Kapsch et al. (2021 and 2022). For the experiment, the model was integrated from a glacial state at 26 ka to the year 1950 with prescribed atmospheric greenhouse gas concentrations (Köhler et al., 2017) and insolation (Berger & Loutre, 1991). Ice sheets and surface topographies were prescribed from ICE-6G (Peltier et al., 2015) reconstructions. All forcing fields are updated every 10 years of the simulations and initiate changes in the topography, glacier mask, river pathways, ocean bathymetry, and land-sea mask. Meltwater from ice sheets is calculated as the temporal derivative of ice thickness at grid points covered by grounded ice sheets. The derived meltwater is then distributed by the hydrological discharge model and finally released into the ocean as freshwater. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations and bug fixes. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022). The current simulation refers to ICE6G_P3 in Kapsch et al. (2022) and is significantly colder during the glacial than model version P1, indicating a stronger sensitivity to greenhouse gas changes. The glacial cooling over the North Atlantic is more realistic in P2 and P3 than in P1. P2 and P3 are also more sensitive to small changes in the meltwater forcing than P1. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations, bug fixes and forcing. These differences are described according to the CMIP6 nomenclature, where r denotes the realization, i the initialization method, p differences in the physics and f in the forcing. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022).

  • The transient simulation was performed with the Max Planck Institute for Meteorology Earth System Model version 1.2 in coarse resolution (MPI-ESM-CR). The model includes the spectral atmospheric model ECHAM6.3 at T31 horizontal resolution (approx. 3.75°) and 31 vertical levels, the land surface vegetation model JSBACH3.2, and the primitive equation ocean model MPIOM1.6 with a nominal resolution of 3°. The applied setup was introduced in detail in Kapsch et al. (2021 and 2022). For the experiment, the model was integrated from a glacial state at 26 ka to the year 1950 with prescribed atmospheric greenhouse gas concentrations (Köhler et al., 2017) and insolation (Berger & Loutre, 1991). Ice sheets and surface topographies were prescribed from GLAC-1D (Tarasov et al., 2012) reconstructions. All forcing fields are updated every 10 years of the simulations and initiate changes in the topography, glacier mask, river pathways, ocean bathymetry, and land-sea mask. Meltwater from ice sheets is calculated as the temporal derivative of ice thickness at grid points covered by grounded ice sheets. The derived meltwater is then distributed by the hydrological discharge model and finally released into the ocean as freshwater. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations and bug fixes. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022). The current simulation refers to GLAC1D_P3 in Kapsch et al. (2022) and is significantly colder during the glacial than model version P1, indicating a stronger sensitivity to greenhouse gas changes. The glacial cooling over the North Atlantic is more realistic in P2 and P3 than in P1. P2 and P3 are also more sensitive to small changes in the meltwater forcing than P1. The experiment was performed as part of a model ensemble that contains simulations differing in terms of their tuning parameters, parameterizations, bug fixes and forcing. These differences are described according to the CMIP6 nomenclature, where r denotes the realization, i the initialization method, p differences in the physics and f in the forcing. The ensemble is described in detail in the Supplementary Material of Kapsch et al. (2022).

Barrierefreiheit | Datenschutz | Impressum