The energy balance station run by University of Bonn measured high-frequency (10 Hz) eddy-covariance raw data with a CSAT3 (Campbell Scientific, Inc.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above the target land use type meadow. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in additional info pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the corresponding additional info pdf-file.
The positions of the meteorological towers (IMKMT1 to IMKMT4) are identical with the positions of the launching sites of the drop-up-sondes (IMKRS1 to IMKRS5). There have been no more than 4 teams operating on each IOP. For detailed information about the sites (including a map) and operating days see supplement pdf-file (cops_rsdu_imk_info_1). The parameters are: air_pressure: measured at about 1.8 m GND by a barometric pressure sensor that has a gill pressure port, 60s mean. air_temperature_at_1.8m: measured at about 1.8 m GND by a HYGROMER meteorology probe MP 400a, 60s mean. relative_humidity_at_1.8m: measured at about 1.8 m GND by a HYGROMER meteorology probe MP 400a, 60s mean. precipitation_amount: measured by a tipping bucket rain gauge (catchment area: 200 cm**2), 60s accumulated. wind_speed_at_4.5m, wind_from_direction_at_4.5m, virtual_temperature_at_4.5m: measured at about 4.5 m by a Young 3-D Sonic Anemometer, 60s mean.
The energy balance stations run by University of Bayreuth measured either high-frequency (20 Hz) eddy-covariance raw data with a CSAT3 (Campbell Scientific, Inc.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer or turbulent fluxes of momentum, sensible and latent heat with a USA-1 (METEK GmbH, Germany) sonic anemometer and two psychrometers (Frankenberger) above different the target land use types. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in the additional pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the supplementary pdf-files corresponding to the individual station.
Surface layer scintillometer data derived from a Optical Energy Balance Measurement System OEBMS1 with a Scintillometer SLS20 system by Scintec AG at station UV1EG (Deckenpfronn). The system operated at a measurement height of 1.75 m and with a path length of 117 m over the target land use type meadow.
The Sodar/RASS device installed at Fussbach consisted of a DSDPA.90/64-Sodar and a DSDR3x7-1290MHz-RASS extension by METEK GmbH. It operated with an averaging period of 10 min. The minimum measurement height was 40 m and the maximum measurement height 700 m with a step width of 20 m in between.
Reflectivity and radial velocity of Karlsruhe C-Band Doppler Radar located at Forschungszentrum Karlsruhe. Volume data in polar coordinates are delivered. Two scans have been performed: 1. 14 Elevation volume scan of reflectivity and radial velocity starting at 0.4 deg elevation up to 30 deg elevation, 120 km range, 500 m resolution, dual PRF (pulse repetition frequency; 1153 Hz/864 Hz): reflectivity and radial velocity. 2. 14 Elevation volume scan as 1, but only single PRF: reflectivity. The data is provided in two different data sets: reflectivity (ca. every 5 min; data from both scan modi) and radial_velocity (every 10 min; data from 1st scan mode).
University of Leeds radiosonde (Vaisala RS80 and RS92-SGP), Hornisgrinde site 2007-06-11 to 2007-08-30 University of Leeds radiosonde (Vaisala RS80 and RS92-SGP), Achern site 2007-06-05 to 2007-08-30
The energy balance stations run by University of Bayreuth continuously measured radiation and soil parameters over different land types with a sampling frequency of 1 Hz averaged to 1 min values within the data logger. After a check for plausibility the 1 min values have been averaged to 30 min intervals, which are provided in this data set. The instrumentation was different on each location. The following was measured depending on the station: - soil heat flux - soil temperature - volumetric soil water content - longwave radiation components - shortwave radiation components - tipping bucket rain gauge measurements The ground heat flux including the heat storage in the upper soil layer was determined from the measured soil heat flux, soil temperatures and volumetric soil water contents according to the 'simple measurement' (SM) method according to Liebethal and Foken (2007).
The two instuments were: Scintec Sodar (MFAS) at Igelsberg, located near a waste disposal site. The device measures wind vectors every ten minutes. Metek RASS-Sodar in Bad-Rotenfels, located near a sewage treatment plant. The vertical wind component in the netCDF-files has been set to dummy values due to quality check failure for this variable.
Several meteorological parameteres were measured at different stations run by FZK/IMK-TRO. Depending on the individual site i.e. wind direction, wind speed, global radiation, reflected irradiance, atmospheric longwave radiation, terrestric longwave radiation, surface temperature, precipitation, air pressure, soil heat flux, relative humidity. The respective set of parameters is described in the meta data of each station.