From 1 - 10 / 40
  • The Sodar/RASS device installed at Fussbach consisted of a DSDPA.90/64-Sodar and a DSDR3x7-1290MHz-RASS extension by METEK GmbH. It operated with an averaging period of 10 min. The minimum measurement height was 40 m and the maximum measurement height 700 m with a step width of 20 m in between.

  • Several meteorological parameteres were measured at different stations run by FZK/IMK-TRO. Depending on the individual site i.e. wind direction, wind speed, global radiation, reflected irradiance, atmospheric longwave radiation, terrestric longwave radiation, surface temperature, precipitation, air pressure, soil heat flux, relative humidity. The respective set of parameters is described in the meta data of each station.

  • The two instuments were: Scintec Sodar (MFAS) at Igelsberg, located near a waste disposal site. The device measures wind vectors every ten minutes. Metek RASS-Sodar in Bad-Rotenfels, located near a sewage treatment plant. The vertical wind component in the netCDF-files has been set to dummy values due to quality check failure for this variable.

  • The positions of the meteorological towers (IMKMT1 to IMKMT4) are identical with the positions of the launching sites of the drop-up-sondes (IMKRS1 to IMKRS5). There have been no more than 4 teams operating on each IOP. For detailed information about the sites (including a map) and operating days see supplement pdf-file (cops_rsdu_imk_info_1). The parameters are: air_pressure: measured at about 1.8 m GND by a barometric pressure sensor that has a gill pressure port, 60s mean. air_temperature_at_1.8m: measured at about 1.8 m GND by a HYGROMER meteorology probe MP 400a, 60s mean. relative_humidity_at_1.8m: measured at about 1.8 m GND by a HYGROMER meteorology probe MP 400a, 60s mean. precipitation_amount: measured by a tipping bucket rain gauge (catchment area: 200 cm**2), 60s accumulated. wind_speed_at_4.5m, wind_from_direction_at_4.5m, virtual_temperature_at_4.5m: measured at about 4.5 m by a Young 3-D Sonic Anemometer, 60s mean.

  • The 9 m profile mast run by University of Bayreuth continuously measured profiles of the wind speed, the air temperature and the water vapor pressure above a corn field with a sampling frequency of 1 Hz averaged to 1 min values within the data logger. Six cup anemometers and five psychrometers have been mounted in different heights. After a check for plausibility the 1 min values have been averaged to 30 min intervals, which are provided in this data set. The following instruments have been installed for the parameters given below: - wind speed: F460 cup anemometer (Climatronics Corp.) - temperature and water vapor pressure: electrically aspirated psychrometer (Frankenberger) The water vapor pressure has been calculated from the measured dry and moist thermometer temperatures of the psychrometer according to Sprung's psychrometer formula.

  • University of Leeds radiosonde (Vaisala RS80 and RS92-SGP), Hornisgrinde site 2007-06-11 to 2007-08-30 University of Leeds radiosonde (Vaisala RS80 and RS92-SGP), Achern site 2007-06-05 to 2007-08-30

  • The energy balance stations run by FZK/IMK-TRO measured high-frequency (20 Hz or 32 Hz) eddy-covariance raw data with either a Solent R1012 (Gill Instruments Ltd.) sonic anemometer or a Young 81000 (R. M. Young Company) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above different target land use types. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in the additional pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the corresponding additional info pdf-files.

  • The energy balance station run by University of Bonn measured high-frequency (10 Hz) eddy-covariance raw data with a CSAT3 (Campbell Scientific, Inc.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above the target land use type meadow. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in additional info pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the corresponding additional info pdf-file.

  • Surface layer scintillometer data derived from a Optical Energy Balance Measurement System OEBMS1 with a Scintillometer SLS20 system by Scintec AG at station UV1EG (Deckenpfronn). The system operated at a measurement height of 1.75 m and with a path length of 117 m over the target land use type meadow.

  • Dropsondes (mobile radiosondes) were launched by 5 mobile radiosonde teams. The launching sites were different from IOP to IOP. The positions are identical with the positions of the meteorological towers (imkmt1 to imkmt4). There have been no more than 4 teams operational on each IOP. The dropsondes are radiosonde-like systems. The maximum height is 12050 m above MSL. At this height, the sondes are separated from the balloon and then glide to the ground. Drop points are up to 70 kilometres apart from launching sites. For detailed information about the sites see supplement file and map.

Barrierefreiheit | Datenschutz | Impressum