From 1 - 10 / 123
  • Forecast data are modelled by the parallel version of the hydrostatic BOlogna Limited Area Model (BOLAM) operational at the Italian National Agency for Environmental Protection and Technical Services in Rome (Italy). This parallel version, called QBOLAM, is employed in an operational setting as a part of the Sistema Idro-Meteo-Mare (Hydro-Meteo-Marine System; SIMM) forecasting chain, with a 11-km grid step over a domain covering the entire Mediterranean basin. The QBOLAM11 model is forced with the QBOLAM33 forecast data, neglecting the first 12 hours (spin-up time), producing a 48-h forecast starting at 0000 UTC. The QBOLAM 33 runs are instead initialized using the 1200 UCT European Centre for Medium-Range Weather Forecasts analyses and forecasts. The SIMM modelling chain includes also a 10-km WAve model (WAM) over the Mediterranean Sea, a shallow-water version of the Princeton Ocean Model (POM) for sea elevation over the Adriatic Sea and a finite element model for sea elevation in the Venice Lagoon (VL-FEM). For DPHASE project, forecast data are provided over a subdomain (referred as DDOM) of the original domain (which covers the entire Mediterranean Basin). Forecast data will be also available on the COPS domain (referred as CDOM). Not all the meteorological fields selected for the experiment are provided, since some of these are not produced by the QBOLAM model. Grid description: Please note that the westermost longitude and the southermost latitude points refer to the sub-domain chosen for MAP DPHASE. The QBOLAM original domain covers the Mediterranean Basin. CDOM: xfirst: -6.0 yfirst: 8.4 xsize: 54.0 ysize: 27.0 xinc: 0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.5 DDOM: xfirst: -9.5 yfirst: 4.4 xsize: 147.0 ysize: 67.0 xinc:0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.5

  • - operational model of MeteoSwiss - configuration: Leap frog time integration; Tiedtke convection scheme with moisture convergence closure; two layer soil module (likely to be changed during DOP); prognostic TKE, qr and qs; no graupel scheme - forecast range 72h starting at 00UTC and 12UTC. Missing time steps are filled with dummy text files. Grid description: DDOM: xfirst: -6.1875 yfirst: -14.625 xsize: 201.0 ysize: 121.0 xinc:0.0625 yinc: 0.0625 xnpole: -170.0 ynpole: 32.5

  • This experiment contains forecasts from the LME (COSMO-EU) model of DWD (7km horizontal resolution, 40 model levels). Model runs are started every 6h at 00, 06, 12 and 18 UTC with a forecast range of +72h. LME (COSMO-EU) is an operational forecast model of DWD. The output is mostly according to the tigge+ list. Descriptions of the differences to TIGGE+ can be found in the summary of the data sets. For a detailed description of the LME (COSMO-EU) model, please contact the originator of the data. Grid description: CDOM: xfirst: -2.73 yfirst: -2.927 xsize: 177.0 ysize: 112.0 xinc: 0.063 yinc: 0.063 xnpole: -170.0 ynpole: 40.0 DDOM: xfirst: -5.882 yfirst: -6.685 xsize: 177.0 ysize: 112.0 xinc: 0.063 yinc: 0.063 xnpole: -170.0 ynpole: 40.0

  • ALADIN is the operational model at Meteo-France. The horizontal resolution is 9.5km, the time step : 415s with a Semi-lagrangian scheme. There are 46 vertical levels with 15 levels below 3000m. The domain of the integration is : (-11.84W, 33.14E) (25N,56.95N) Physical parameterization: - the micro-physics scheme use 4 prognostic variables: liquid and ice cloud water, rain and snow. - the convection scheme is based on Bougeault (1985) with a donwdraft parameterization. - the operational ECMWF radiation code which is called every 60 minutes. - the burbulence is based on Louis's function with an interactive mixing length. ALADIN is coupled with ARPEGE every 3 hours and has its own assimilation system based on 3DVAR. The post-processing in GRIB files is done on a regular LAT-LON Grid with a 0.1 deg resolution on the DPHASE domain. ALADIN-FRANCE daily performs 54h forecasts starting at 0TU, 6TU, 12TU, 18TU (only the 0UTC forecast until 30h is sent) Grid description: DDOM: xfirst: 2.0 yfirst: 43.0 xsize: 161.0 ysize: 71.0 xinc: 0.1 yinc: 0.1 xnpole: 0.0 ynpole: 0.0

  • lami28 stands for 'Limited Area Model Italy' which is the Italian implementation of COSMO Model, run with a 2.8 km grid interval. COSMO model in lami28 suite is run operationally once a day with a 2.8 km grid interval; it is initialised at 00 UTC with the lami7 interpolated analysis; the boundary conditions as well are provided by lami7 model; the integration domain ranges approximately from 6°E to 19°E and from 36°N to 48°N and the integration time range is 48 hours. The model is run at Cineca computing centre (http://www.cineca.it) on an IBM Power5 platform. The PICS datasets was not provided due to computer time constraints. Please note: data are available ONLY from 09/10/2007 to 30/11/2007. Grid description: DDOM: xfirst: -3.5 yfirst: -15.425 xsize: 417.0 ysize: 272.0 xinc: 0.025 yinc: 0.025 xnpole: 32.5 ynpole: -170.0

  • This experiment contains forecasts from the LMK (COSMO-DE) high resolution model of DWD (2.8km horizontal resoultion and 50 model levels). Model runs are started every 3h at 00, 03, 06, 09, 12, 15, 18 and 21 UTC with a forecast range of +18h. LMK (COSMO-DE) is an operational forecast model of DWD. Therefore, we adapted the output of the model as close as possible to the tigge+ list, but there are some differences; see dataset summaries. For a detailed description of the LMK (COSMO-DE) model, please contact the originator of the data. All datasets for COPS in the database have an output frequency of 15 minutes. If the variables are not provided by LMK (COSMO-DE) with an output frequency of 15 minutes then the hourly output has been linearily interpolated in time. LMK (COSMO-DE) provides only a subset of the TIGGE+ variables with an output frequency of 15 minutes. These are: Total precipitation (all types) (kg/m**2) acc_st 011 002 TPT2 Precipitation: grid-scale only, rain (kg/m**2) acc_st 102 201 SURF Precipitation: grid-scale only, snow (kg/m**2) acc_st 079 002 SURF Precipitation: grid-scale only, graupel (kg/m**2) acc_st 132 201 SURF Precipitation rate: grid-scale only, rain (kg/s/m**2) inst 100 201 SURF Precipitation rate: grid-scale only, snow (kg/s/m**2) inst 100 201 SURF Precipitation rate: grid-scale only, graupel (kg/s/m**2) inst 100 201 SURF Total column water vapour (or precipitable water) (kg/m**2) inst 054 002 SURF Total column cloud water (or cloud water) (kg/m**2) inst 076 002 SURF Total column cloud ice (or cloud ice) (kg/m**2) inst 058 002 SURF W-velocity (m/s) inst 040 002 MUVW Grid descitption: CDOM: xfirst: -2.73 yfirst: -2.927 xsize: 135.0 ysize: 118.0 xinc: 0.025 yinc: 0.025 xnpole: -170.0 ynpole: 40.0 DDOM: xfirst: -5.882 yfirst: -6.685 xsize: 441.0 ysize: 279.0 xinc: 0.025 yinc: 0.025 xnpole: -170.0 ynpole: 40.0

  • 72h forecast with MM5 V3.7, nested run using - mm5_60 run as input - 15km x 15km resolution - 77 x 73 Grids - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: 2.800095 yfirst: 42.172424 xsize: 76.0 ysize: 72.0 xinc: 0.02 yinc: 0.14 xnpole: 0.0 ynpole: 0.0

  • LARSIM (LARSIM=LArge Area Runoff Simulation Model BW= Baden-Wuerttemberg) is described in "Freiburger Schriften zur Hydrologie", Band 22. 2006 (Ludwig, K.; Bremicker, M.: The water Balance Model LARSIM) The calculated results from LARSIM for the gauges Murg at Rotenfels and Kinzig at Schwaibach were handed over. The results are calcultaed in operational mode of the flood forecasting centre Karlsruhe (HVZ). The forecasts were corrected with ARIMA (0,1,0), i.e. the forecasted discharges were shifted with a constant amount, so, that the first forecast value attaches directly to the last measured value. During low water periods, the forecast is adapted to the average value of the last 24 h of the measured values. The forecasts were calculated for 72 hours. The runs driven by the DWD forecast LMK takes the LMK (new name: COSMO-DE) for the first 21 hours and then the LME-forecast. The runs called LME take only the LME (new name: COSMO-EU) forecast into accuont. For the period up to the forecast time measured values were used. The model uses precipitation, temperature, wind velocity, dew point or rel. humidity and the solar radiation. The measurement network uses the stations of the German Weatherservice DWD, the stations of the federal state Baden-Wuerttemberg (called "LUBW Luft" and "LUBW Ombro") and stations of third parties. The measurement network is very dense, but the equipement of the different stations may be dissimilar. You can see the network of the precipitation stations at http://www.hvz.baden-wuerttemberg.de/ -> Niederschlag -> Stationskarte. The forecasts were performed by the Flood Forecasting Centre Karlsruhe (HVZ) with its operational model "Oberrheinzf" (for Oberrheinzufluesse = tributaries of the river Rhine). The HVZ is part of the "Landesanstalt fuer Umwelt, Messungen und Naturschutz Baden-Wuerttemberg" (LUBW)". The model covers the region: 7°42' / 48°04' und 8°33' / 49°02'

  • Model system ALADIN, 18km horizontal resolution, 37 levels in vertical, LOPEZ microphysics etc. Ensemble system with 16 members. 2 runs per day at 00, 12 UTC, Initial perturbation: Downscaling of ECMWF Singular vector perturbation Lateral boundary perturbation: Coupling with the ECMWF EPS system Domain of products: Latitude: 38.53---54.98, 0.15 deg grid space, 110 grids; Longitude: 2.55---31.8, 0.15 deg. grid space, 196 grids Every 3 hours, from 0 to 48 hours forecast. Grid description: quadratic grid, it is the Lambert Projection DDOM: xfirst: 2.55 yfirst: 42.95 xsize: 105.0 ysize: 49.0 xinc: 0.15 yinc: 0.15 xnpole: 0.0 ynpole: 0.0

Barrierefreiheit | Datenschutz | Impressum