From 1 - 10 / 51
  • Forecast data are modelled by the parallel version of the hydrostatic BOlogna Limited Area Model (BOLAM) operational at the Italian National Agency for Environmental Protection and Technical Services in Rome (Italy). This parallel version, called QBOLAM, is employed in an operational setting as a part of the Sistema Idro-Meteo-Mare (Hydro-Meteo-Marine System; SIMM) forecasting chain, with a 11-km grid step over a domain covering the entire Mediterranean basin. The QBOLAM11 model is forced with the QBOLAM33 forecast data, neglecting the first 12 hours (spin-up time), producing a 48-h forecast starting at 0000 UTC. The QBOLAM 33 runs are instead initialized using the 1200 UCT European Centre for Medium-Range Weather Forecasts analyses and forecasts. The SIMM modelling chain includes also a 10-km WAve model (WAM) over the Mediterranean Sea, a shallow-water version of the Princeton Ocean Model (POM) for sea elevation over the Adriatic Sea and a finite element model for sea elevation in the Venice Lagoon (VL-FEM). For DPHASE project, forecast data are provided over a subdomain (referred as DDOM) of the original domain (which covers the entire Mediterranean Basin). Forecast data will be also available on the COPS domain (referred as CDOM). Not all the meteorological fields selected for the experiment are provided, since some of these are not produced by the QBOLAM model. Grid description: Please note that the westermost longitude and the southermost latitude points refer to the sub-domain chosen for MAP DPHASE. The QBOLAM original domain covers the Mediterranean Basin. CDOM: xfirst: -6.0 yfirst: 8.4 xsize: 54.0 ysize: 27.0 xinc: 0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.5 DDOM: xfirst: -9.5 yfirst: 4.4 xsize: 147.0 ysize: 67.0 xinc:0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.5

  • The hydrological model DIMOSOP was run by University of Brescia with three different atmospheric forcings and different runoff forecast times. For more information on the model please contact the originator. Basins: Brenta at Bassano, Avisio at Stramentizzo, Noce at S.Giustina, Sarca at Maso Gobbo, Chiese at Lago Idro, Mella at Stocchetta, Oglio at Sarnico, Chiese at Malga Bissina, Lago d Arno, Lago d Avio, Cismon at Corlo, Toce at Candoglia, Rio del Sabbione at Sabbione, Gries at Morasco, T.Roni at Toggia, Rio d Arbola at Codelago, Melezzo at Masera, Bogna at Pontecaddo, Toce at Pontemaglio, Anza at Piedimulera, Isorno at Pontetto, Diveria at Crevoladossola, Ovesca at Villadossola, Anza at Ceppo Morelli, Diga Antrona, Ciampere at Avino, Ovesca at Alpe Cavalli, Devero at Agaro, Lago Busin, Lago Vannino, Taro at Pontetaro, Taro at S.Secondo, Cismon at Corlo

  • LARSIM (LARSIM=LArge Area Runoff Simulation Model BW= Baden-Wuerttemberg) is described in "Freiburger Schriften zur Hydrologie", Band 22. 2006 (Ludwig, K.; Bremicker, M.: The water Balance Model LARSIM) The calculated results from LARSIM for the gauges Murg at Rotenfels and Kinzig at Schwaibach were handed over. The results are calcultaed in operational mode of the flood forecasting centre Karlsruhe (HVZ). The forecasts were corrected with ARIMA (0,1,0), i.e. the forecasted discharges were shifted with a constant amount, so, that the first forecast value attaches directly to the last measured value. During low water periods, the forecast is adapted to the average value of the last 24 h of the measured values. The forecasts were calculated for 72 hours. The runs driven by the DWD forecast LMK takes the LMK (new name: COSMO-DE) for the first 21 hours and then the LME-forecast. The runs called LME take only the LME (new name: COSMO-EU) forecast into accuont. For the period up to the forecast time measured values were used. The model uses precipitation, temperature, wind velocity, dew point or rel. humidity and the solar radiation. The measurement network uses the stations of the German Weatherservice DWD, the stations of the federal state Baden-Wuerttemberg (called "LUBW Luft" and "LUBW Ombro") and stations of third parties. The measurement network is very dense, but the equipement of the different stations may be dissimilar. You can see the network of the precipitation stations at http://www.hvz.baden-wuerttemberg.de/ -> Niederschlag -> Stationskarte. The forecasts were performed by the Flood Forecasting Centre Karlsruhe (HVZ) with its operational model "Oberrheinzf" (for Oberrheinzufluesse = tributaries of the river Rhine). The HVZ is part of the "Landesanstalt fuer Umwelt, Messungen und Naturschutz Baden-Wuerttemberg" (LUBW)". The model covers the region: 7°42' / 48°04' und 8°33' / 49°02'

  • 72h forecast with MM5 V3.7 using - 60km x 60km resolution - 55 x 45 Grids - NOAA GFS input - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: -6.769222 yfirst: 34.404968 xsize: 55.0 ysize: 45.0 xinc: 0.2 yinc: 0.54 xnpole: 0.0 ynpole: 0.0

  • Forecast data are modelled by a 30-km parallel version of the hydrostatic BOlogna Limited Area Model (BOLAM) operational at the National Agency for Environmental Protection and Technical Services (APAT) at Rome (Italy). This version, referred as 30-km QBOLAM model, is the driving model of the 11-km QBOLAM model which is described in the dphase_qbolam11 experiment. For DPHASE project, forecast data are provided over a subdomain (refered as DDOM) of the original domain (which covers the entire Mediterranean Basin). Not all the meteorological fields selected for the experiment are provided, since some of these are not produced by the QBOLAM model. Initial and boundary conditions for a 60-h QBOLAM33 forecast are derived from the European Centre for Medium-Range Weather Forecasts analysis and forecast issued at 1200 UTC on the previous day. Grid description: Please note that the westermost longitude and the southermost latitude points refer to the sub-domain chosen for MAP DPHASE. The QBOLAM original domain covers the Mediterranean Basin. DDOM: xfirst: -10.2 yfirst: 4.2 xsize: 54.0 ysize: 40.0 xinc: 0.3 yinc: 0.3 xnpole: -167.5 ynpole: 51.5

  • Non hydrostatic model Moloch, developed at ISAC CNR and operational at ARPAL CFMI-PC. Initial and boundary conditions provided by the model chain based on bolam and initialized with the 00 UTC ECMWF run. Grid description: DDOM: xfirst: -1.99 yfirst: -1.93 xsize: 200.0 ysize: 194.0 xinc: 0.02 yinc: 0.02 xnpole: -171.0 ynpole: 45.0

  • - preoperational model (planned to become operational in 2008) - configuration: Runge Kutta time integration scheme (dt=20sek); multi layer soil module; no parameterized deep convection; 60 levels; prognostic TKE, rain, snow and graupel - model runs are started at 00UTC 03UTC 09UTC 12UTc and 18UTC. Forecast range is 24h, except 09 and 18 run ranging upt to 30h. To complete the timeseries, dummy text files have been generated for 06UTC, 15UTC, 21UTC. Missing time steps are filled with dummy text files as well. Note: From 12th of July 2007 on, +24h forecasts are produced for 06, 15 and 21 UTC as well. Grid description: CDOM: xfirst: -2.76 yfirst: -0.02 xsize: 174.0 ysize: 141.0 xinc: 0.02 yinc: 0.02 xnpole: -170.0 ynpole: 43.0 DDOM: xfirst: -5.5 yfirst: -3.8 xsize: 500.0 ysize: 330.0 xinc: 0.02 yinc: 0.02 xnpole: -170.0 ynpole: 43.0

  • Accurate initialization of the water vapor field is important for NWP. With recent advances in Global Positioning System (GPS) atmospheric remote sensing, ground-based GPS receivers have become an important instrument that can provide high resolution water vapor measurements operationally at low cost with an accuracy of a few millimeters. The system can operate in all weather conditions. During the COPS campaign, a dense network of GPS receivers was installed. This data has been assimilated in real-time into the MM5 4DVAR system to improve quantitative precipitation forecasts and process understanding. Operational forecasts initialized with 4DVAR and corresponding CONTROL forecasts, initialized only by the ECMWF forecast,ran the whole COPS/D-PHASE period to provide a basis for future statistical investigations. This experiment contains only the innermost domain (2km) of the forecast initialized with the operational ECMWF forecast only (CONTROL). The corresponding 4DVAR forecast can be found as experiment dphase_mm5_2_4d. Assimilation run: - 18 km horizontal resolution - 36 level up tp 100 hPa - 64x70 grid points - MM5 3.4 (4DVAR version) - Kuo convection scheme - MRF PBL scheme - Simple radiation - Warm cloud microphysics - 3 hour assimilation window Free forecast run: only innermost 2km domain (CDOM) was archived) - Triple 2-way nested 24h forecast (18, 6, 2 km resolution) - 36 level up to 100 hPa - 64x70 points (18 km), 106x109 points (6 km), 169x184 points (2 km) - MM5 3.7.4 - Kain Fritsch 2 cumulus (no parameterization in the 2 km domain) - Reisner2 cloud microphysics - RRTM LW + Dudhia SW radiation - MRF PBL scheme - 5 layer soil model Note: here the datasets differ in time resolution (DDOM:1h, CDOM 15min) not in region. Grid description:"CDOM"+"DDOM":xinc/yinc:2.0 xnpole/ynpole:0.0 xfirst:6.0205 yfirst:47.0167 xsize:184.0 ysize:169.0

  • Aladin-Austria daily numerical weather forecast. It is a hydrostatical model, where the equations are solved by transformation to the spectral form. For the microphysics a Kessler-Typ scheme is used. Two runs are conducted each day at 00:00, 12:00 (72 hours forecast range). The horizontal resolution amounts to 9.6 km, on 45 pressure levels in the vertical. The domain spans Central Europe. Grid description: quadratic grid, Lambert Projection DDOM: xfirst: 2.53 yfirst: 42.94 xsize: 142.0 ysize: 102.0 xinc: 0.11 yinc: 0.07 xnpole: 0.0 ynpole: 0.0

Datenschutz | Impressum