From 1 - 10 / 123
  • Accurate initialization of the water vapor field is important for NWP. With recent advances in Global Positioning System (GPS) atmospheric remote sensing, ground-based GPS receivers have become an important instrument that can provide high resolution water vapor measurements operationally at low cost with an accuracy of a few millimeters. The system can operate in all weather conditions. During the COPS campaign, a dense network of GPS receivers was installed. This data has been assimilated in real-time into the MM5 4DVAR system to improve quantitative precipitation forecasts and process understanding. Operational forecasts initialized with 4DVAR and corresponding CONTROL forecasts, initialized only by the ECMWF forecast,ran the whole COPS/D-PHASE period to provide a basis for future statistical investigations. This experiment contains only the innermost domain (2km) of the forecast initialized with the operational ECMWF forecast only (CONTROL). The corresponding 4DVAR forecast can be found as experiment dphase_mm5_2_4d. Assimilation run: - 18 km horizontal resolution - 36 level up tp 100 hPa - 64x70 grid points - MM5 3.4 (4DVAR version) - Kuo convection scheme - MRF PBL scheme - Simple radiation - Warm cloud microphysics - 3 hour assimilation window Free forecast run: only innermost 2km domain (CDOM) was archived) - Triple 2-way nested 24h forecast (18, 6, 2 km resolution) - 36 level up to 100 hPa - 64x70 points (18 km), 106x109 points (6 km), 169x184 points (2 km) - MM5 3.7.4 - Kain Fritsch 2 cumulus (no parameterization in the 2 km domain) - Reisner2 cloud microphysics - RRTM LW + Dudhia SW radiation - MRF PBL scheme - 5 layer soil model Note: here the datasets differ in time resolution (DDOM:1h, CDOM 15min) not in region. Grid description:"CDOM"+"DDOM":xinc/yinc:2.0 xnpole/ynpole:0.0 xfirst:6.0205 yfirst:47.0167 xsize:184.0 ysize:169.0

  • 72h forecast with MM5 V3.7, nested run using - mm5_60 run as input - 15km x 15km resolution - 77 x 73 Grids - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: 2.800095 yfirst: 42.172424 xsize: 76.0 ysize: 72.0 xinc: 0.02 yinc: 0.14 xnpole: 0.0 ynpole: 0.0

  • ALADIN is the operational model at Meteo-France. The horizontal resolution is 9.5km, the time step : 415s with a Semi-lagrangian scheme. There are 46 vertical levels with 15 levels below 3000m. The domain of the integration is : (-11.84W, 33.14E) (25N,56.95N) Physical parameterization: - the micro-physics scheme use 4 prognostic variables: liquid and ice cloud water, rain and snow. - the convection scheme is based on Bougeault (1985) with a donwdraft parameterization. - the operational ECMWF radiation code which is called every 60 minutes. - the burbulence is based on Louis's function with an interactive mixing length. ALADIN is coupled with ARPEGE every 3 hours and has its own assimilation system based on 3DVAR. The post-processing in GRIB files is done on a regular LAT-LON Grid with a 0.1 deg resolution on the DPHASE domain. ALADIN-FRANCE daily performs 54h forecasts starting at 0TU, 6TU, 12TU, 18TU (only the 0UTC forecast until 30h is sent) Grid description: DDOM: xfirst: 2.0 yfirst: 43.0 xsize: 161.0 ysize: 71.0 xinc: 0.1 yinc: 0.1 xnpole: 0.0 ynpole: 0.0

  • Forecast data are modelled by a 30-km parallel version of the hydrostatic BOlogna Limited Area Model (BOLAM) operational at the National Agency for Environmental Protection and Technical Services (APAT) at Rome (Italy). This version, referred as 30-km QBOLAM model, is the driving model of the 11-km QBOLAM model which is described in the dphase_qbolam11 experiment. For DPHASE project, forecast data are provided over a subdomain (refered as DDOM) of the original domain (which covers the entire Mediterranean Basin). Not all the meteorological fields selected for the experiment are provided, since some of these are not produced by the QBOLAM model. Initial and boundary conditions for a 60-h QBOLAM33 forecast are derived from the European Centre for Medium-Range Weather Forecasts analysis and forecast issued at 1200 UTC on the previous day. Grid description: Please note that the westermost longitude and the southermost latitude points refer to the sub-domain chosen for MAP DPHASE. The QBOLAM original domain covers the Mediterranean Basin. DDOM: xfirst: -10.2 yfirst: 4.2 xsize: 54.0 ysize: 40.0 xinc: 0.3 yinc: 0.3 xnpole: -167.5 ynpole: 51.5

  • lami28 stands for 'Limited Area Model Italy' which is the Italian implementation of COSMO Model, run with a 2.8 km grid interval. COSMO model in lami28 suite is run operationally once a day with a 2.8 km grid interval; it is initialised at 00 UTC with the lami7 interpolated analysis; the boundary conditions as well are provided by lami7 model; the integration domain ranges approximately from 6°E to 19°E and from 36°N to 48°N and the integration time range is 48 hours. The model is run at Cineca computing centre (http://www.cineca.it) on an IBM Power5 platform. The PICS datasets was not provided due to computer time constraints. Please note: data are available ONLY from 09/10/2007 to 30/11/2007. Grid description: DDOM: xfirst: -3.5 yfirst: -15.425 xsize: 417.0 ysize: 272.0 xinc: 0.025 yinc: 0.025 xnpole: 32.5 ynpole: -170.0

  • Hydrological forecasts with hydrological model LARSIM (LARSIM=LArge Area Runoof Simulation Model, BY=Bavaria, Conceptual RR-model. Forecast depth: 72 hours.) for rivers Iller and Lech (DE) driven by numerical weather prediction models LME, GME, GFS. The runs were performed by "Wasserwirtschaftsamt Kempten" (WWA-KE).

  • The forecasting chain is based on the 18 UTC, ECMWF forecasts at 0.25 degree resolution. The chain comprises the hydrostatic model BOLAM, which is driven directly by the global model, and the non-hydrostatic model MOLOCH (horizontal resolution 0.02 degrees), which is nested in cascade using a 1-way nesting procedure. BOLAM run starts at 18 UTC, MOLOCH is nested at 00 UTC. MOLOCH domain is smaller than official DPHASE domain. A 48-h MOLOCH forecast is provided daily. Only a sub-set of TIGGE list is provided (see DS). More information available here: http://www.isac.cnr.it/~dinamica/ Grid description: lat-lon Arakawa C grid. Rotated equidistant grid. DDOM: xfirst: -3.5 yfirst: -14.0 xsize: 330.0 ysize: 290.0 xinc: 0.021 yinc: 0.02 xnpole: -170.0 ynpole: 32.5

  • Model system ALADIN, 18km horizontal resolution, 37 levels in vertical, LOPEZ microphysics etc. Ensemble system with 16 members. 2 runs per day at 00, 12 UTC, Initial perturbation: Downscaling of ECMWF Singular vector perturbation Lateral boundary perturbation: Coupling with the ECMWF EPS system Domain of products: Latitude: 38.53---54.98, 0.15 deg grid space, 110 grids; Longitude: 2.55---31.8, 0.15 deg. grid space, 196 grids Every 3 hours, from 0 to 48 hours forecast. Grid description: quadratic grid, it is the Lambert Projection DDOM: xfirst: 2.55 yfirst: 42.95 xsize: 105.0 ysize: 49.0 xinc: 0.15 yinc: 0.15 xnpole: 0.0 ynpole: 0.0

  • The horizontal grid spacing for MESONH is here 2 km. The domain size is 192 x 180 gridpoints covering the COPS area. The vertical grid has 50 levels up to 20 km with a grid length varying from 60 m close to the surface to 600 m at high altitude. The model was integrated forward for 30 hours every day starting from 00 UTC ECMWF analysis and keeping outputs every 15 minutes. More information is available at http://mesonh.aero.obs-mip.fr/mesonh/cops/ Grid description: CDOM: xfirst: 6.0 yfirst: 47.0 xsize: 251.0 ysize: 151.0 xinc: 0.02 yinc: 0.02 xnpole: 0.0 ynpole: 0.0

  • The goal of the experiment is to drive FEST, a rainfall-runoff distributed model with continuous soil moisture account, with ensemble forecasts from COSMO-LEPS (CLEPS) and with forecasts from ISACMOL2. The application domain is the Toce-Ticino and Maggia watershed. Hydrograph simulations and alerts are provided for Candoglia (Toce), Solduno (Maggia) and Bellinzona (Ticino). The runs were provided by Politecnico di Milano (PoliMi), Italy.

Barrierefreiheit | Datenschutz | Impressum