High-resolution simulations of the palaeoclimate are carried out throughout Europe. A set of climate simulations will be performed, based on the so-called time slicing technique. The simulations are performed with the state-of-the-art regional climate model COSMO-CLM (cosmo_4.8_clm19) at a horizontal resolution of 0.44° longitude and 40 vertical levels. The COSMO-CLM is a non-hydrostatic RCM with rotated geographical coordinates and a terrain following height coordinate (Rockel et al., 2008), developed by the German Weather Service (DWD) of the COSMO model (Doms and Schättler, 2003). The ECHAM5 output is used as a boundary data set for the dynamic downscaling approach. Detailed information on the model set-up can be found in Russo and Cubasch (2016). Russo, E. and Cubasch, U.: Mid-to-late Holocene temperature evolution and atmospheric dynamics over Europe in regional model simulations, Clim. Past, 12, 1645-1662, https://doi.org/10.5194/cp-12-1645-2016, 2016.
These are two atmospheric hourly hindcasts for Siberia using COSMO-CLM (CCLM) version 4.8_clm_11 with spectral nudging. The hindcast CCLM_sib_NCEP1 covers a period from 1948-2010 and has been performed using NCEP-R1 Reanalysis as global atmospheric forcing for the initialization and regional boundaries. The hindcast CCLM_sib_ERA40 was driven by ERA-40 from 1959-2001. CCLM uses a rotated grid with 76 x 76 grid points (without the sponge zone) and a grid point distance of 0.44 degrees, the rotated North pole is located at 75 W, 35 N. In rotated coordinates the model area extends from 14.72 W to 18.28 E, 9.72 S to 27.68 N, in geographical coordinates this corresponds to about 41.2 W to 174.9 E, 42 N to 82.7 N. For all variables lon, lat and the value of the 18:00 time record for the last day is added. The output from the model run: Blizzard
This is an atmospheric hourly hindcast for the German Bight using COSMO-CLM version 5.00_clm2 from 1948-August 2015 (http://www.cosmo-model.org/content/model/documentation/core/default.htm). The model uses a rotated grid with 250 x 180 grid points and a grid point distance of 0.025 degrees, the rotated North pole is located at 172.97 W, 34.925 N. The forcing is coastDat2 doi:10.1594/WDCC/coastDat-2_COSMO-CLM . In rotated coordinates the model area extends from 2.25 W to 2.25 E, 3.125 S to 3.125 N, in geographical coordinates this corresponds to about 1.3 E to 12.8 E, 52.7 N to 57.3 N.
This is an atmospheric hourly hindcast for Western Europe and the North Atlantic using COSMO-CLM version 4.8_clm_11 with spectral nudging from 1948-2012. The model uses a rotated grid with 254 x 248 grid points and a grid point distance of 0.22 degrees, the rotated North pole is located at 170 W, 35 N. In rotated coordinates the model area extends from 30.44 W to 25.22 E, 25.72 S to 28.62 N, in geographical coordinates this corresponds to about 68 W to 82 E, 25.6 N to 81.4 N.
This is an atmospheric hindcast for Western Europe and the North Atlantic using COSMO-CLM version 5.0 with spectral nudging from 2002-2017. MERRA2 reanalysis data are used as forcing. Additionally transient and monthly aerosol data of the MACv2 climatology are prescribed. The model uses a rotated grid with 566 x 481 grid points and a grid point distance of 0.0625 degrees, the rotated North pole is located at 162.0 W, 39.25 N. The published data excludes the sponge zone and have 526 x 441 grid points. In rotated coordinates the published simulation data extends from 22.64 W to 10.18 E, 11.2 S to 16.3 N, in geographical coordinates this corresponds to about 12 W to 30 E, 39 N to 60 N. institution: Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Germany source: int2lm_131101_2.00_clm4, COSMO-CLM5.0_clm14_aerosol_gust (available at DKRZ's LTA WDCC service), http://www.cosmo-model.org/content/model/documentation/core/default.htm contact: http://coastmod.hzg.de originator: Ronny Petrik crs: EPSG:4326
High-resolution simulations of the palaeoclimate are carried out throughout Europe. A set of climate simulations will be performed, based on the so-called time slicing technique. The simulations are performed with the state-of-the-art regional climate model COSMO-CLM (cosmo_4.8_clm19) at a horizontal resolution of 0.44° longitude and 40 vertical levels. The COSMO-CLM is a non-hydrostatic RCM with rotated geographical coordinates and a terrain following height coordinate (Rockel et al., 2008), developed by the German Weather Service (DWD) of the COSMO model (Doms and Schättler, 2003). The ECHAM5 output is used as a boundary data set for the dynamic downscaling approach. Detailed information on the model set-up can be found in Russo and Cubasch (2016). Russo, E. and Cubasch, U.: Mid-to-late Holocene temperature evolution and atmospheric dynamics over Europe in regional model simulations, Clim. Past, 12, 1645-1662, https://doi.org/10.5194/cp-12-1645-2016, 2016.
These are two atmospheric hourly hindcasts for Siberia using COSMO-CLM (CCLM) version 4.8_clm_11 with spectral nudging. The hindcast CCLM_sib_NCEP1 covers a period from 1948-2010 and has been performed using NCEP-R1 Reanalysis as global atmospheric forcing for the initialization and regional boundaries. The hindcast CCLM_sib_ERA40 was driven by ERA-40 from 1959-2001. CCLM uses a rotated grid with 76 x 76 grid points (without the sponge zone) and a grid point distance of 0.44 degrees, the rotated North pole is located at 75 W, 35 N. In rotated coordinates the model area extends from 14.72 W to 18.28 E, 9.72 S to 27.68 N, in geographical coordinates this corresponds to about 41.2 W to 174.9 E, 42 N to 82.7 N. For all variables lon, lat and the value of the 18:00 time record for the last day is added. The output from the model run: Blizzard
This is an atmospheric hourly hindcast for Western Europe and the North Atlantic using COSMO-CLM version 4.8_clm_11 with spectral nudging from 1948-2012. The model uses a rotated grid with 254 x 248 grid points and a grid point distance of 0.22 degrees, the rotated North pole is located at 170 W, 35 N. In rotated coordinates the model area extends from 30.44 W to 25.22 E, 25.72 S to 28.62 N, in geographical coordinates this corresponds to about 68 W to 82 E, 25.6 N to 81.4 N.
This is an atmospheric hourly hindcast for the German Bight using COSMO-CLM version 5.00_clm2 from 1948-August 2015 (http://www.cosmo-model.org/content/model/documentation/core/default.htm). The model uses a rotated grid with 250 x 180 grid points and a grid point distance of 0.025 degrees, the rotated North pole is located at 172.97 W, 34.925 N. The forcing is coastDat2 doi:10.1594/WDCC/coastDat-2_COSMO-CLM . In rotated coordinates the model area extends from 2.25 W to 2.25 E, 3.125 S to 3.125 N, in geographical coordinates this corresponds to about 1.3 E to 12.8 E, 52.7 N to 57.3 N.
This is a hydrodynamic hindcast for the North Sea and the Northeast Atlantic over the period 1948-2022 and ongoing. Atmospheric forcing is the regional COSMO-CLM NCEP1 data. The simulation has been performed with the hydrodynamic model TRIM-NP V2.5 in barotropic 2D mode. FES tides are included. Water level and current component fields are stored hourly. The model is set up on an equidistant Cartesian grid cascade with the center near Helgoland (7.88 E, 54.18 N). The coarsest grid with 12.8 km resolution covers the area from 20 W to 30 E and from 42 N to 65 N. Further nested grids better resolve the North Sea (with 6.4km), southern North Sea (with 3.2km) and the German Bight (with 1.6km and 0.4km). Hourly model data from grid 1 (ssh) and grid 4 (ssh, u-current, v-current) are available in this data bank. For data from other grids or 20min temporal resolution please contact the authors.