From 1 - 10 / 123
  • The model is the very-high resolution operational implementation of COSMO model used by the Italian Met Service. The geographic area where the model is being run covers the entire italian pensinsula and major islands. The horizontal resolution is 2.8 km (0.025deg) with 50 vertical levels. The model is routinely run on the ECMWF computing resources once a day at 00Z with hourly output. The boundary conditions (BC) are interpolated from COSMO-ME forecast fields with 1 hour frequency update. Grid description: CDOM: xfirst: -2.6 yfirst: -10.65 xsize: 139.0 ysize: 110.0 xinc: 0.025 yinc: 0.025 xnpole: -170.0 ynpole: 32.5 DDOM: xfirst: -5.0 yfirst: -14.3 xsize: 449.0 ysize: 256.0 xinc: 0.025 yinc: 0.025 xnpole: -170.0 ynpole: 32.5

  • 72h forecast with MM5 V3.7 using - 60km x 60km resolution - 55 x 45 Grids - NOAA GFS input - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: -6.769222 yfirst: 34.404968 xsize: 55.0 ysize: 45.0 xinc: 0.2 yinc: 0.54 xnpole: 0.0 ynpole: 0.0

  • Forecast data are modelled by the parallel version of the hydrostatic BOlogna Limited Area Model (BOLAM) operational at the Italian National Agency for Environmental Protection and Technical Services in Rome (Italy). This parallel version, called QBOLAM, is employed in an operational setting as a part of the Sistema Idro-Meteo-Mare (Hydro-Meteo-Marine System; SIMM) forecasting chain, with a 11-km grid step over a domain covering the entire Mediterranean basin. The QBOLAM11 model is forced with the QBOLAM33 forecast data, neglecting the first 12 hours (spin-up time), producing a 48-h forecast starting at 0000 UTC. The QBOLAM 33 runs are instead initialized using the 1200 UCT European Centre for Medium-Range Weather Forecasts analyses and forecasts. The SIMM modelling chain includes also a 10-km WAve model (WAM) over the Mediterranean Sea, a shallow-water version of the Princeton Ocean Model (POM) for sea elevation over the Adriatic Sea and a finite element model for sea elevation in the Venice Lagoon (VL-FEM). For DPHASE project, forecast data are provided over a subdomain (referred as DDOM) of the original domain (which covers the entire Mediterranean Basin). Forecast data will be also available on the COPS domain (referred as CDOM). Not all the meteorological fields selected for the experiment are provided, since some of these are not produced by the QBOLAM model. Grid description: Please note that the westermost longitude and the southermost latitude points refer to the sub-domain chosen for MAP DPHASE. The QBOLAM original domain covers the Mediterranean Basin. CDOM: xfirst: -6.0 yfirst: 8.4 xsize: 54.0 ysize: 27.0 xinc: 0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.5 DDOM: xfirst: -9.5 yfirst: 4.4 xsize: 147.0 ysize: 67.0 xinc:0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.5

  • The hydrological model DIMOSOP was run by University of Brescia with three different atmospheric forcings and different runoff forecast times. For more information on the model please contact the originator. Basins: Brenta at Bassano, Avisio at Stramentizzo, Noce at S.Giustina, Sarca at Maso Gobbo, Chiese at Lago Idro, Mella at Stocchetta, Oglio at Sarnico, Chiese at Malga Bissina, Lago d Arno, Lago d Avio, Cismon at Corlo, Toce at Candoglia, Rio del Sabbione at Sabbione, Gries at Morasco, T.Roni at Toggia, Rio d Arbola at Codelago, Melezzo at Masera, Bogna at Pontecaddo, Toce at Pontemaglio, Anza at Piedimulera, Isorno at Pontetto, Diveria at Crevoladossola, Ovesca at Villadossola, Anza at Ceppo Morelli, Diga Antrona, Ciampere at Avino, Ovesca at Alpe Cavalli, Devero at Agaro, Lago Busin, Lago Vannino, Taro at Pontetaro, Taro at S.Secondo, Cismon at Corlo

  • Model system ALADIN, 18km horizontal resolution, 37 levels in vertical, LOPEZ microphysics etc. Ensemble system with 16 members. 2 runs per day at 00, 12 UTC, Initial perturbation: Downscaling of ECMWF Singular vector perturbation Lateral boundary perturbation: Coupling with the ECMWF EPS system Domain of products: Latitude: 38.53---54.98, 0.15 deg grid space, 110 grids; Longitude: 2.55---31.8, 0.15 deg. grid space, 196 grids Every 3 hours, from 0 to 48 hours forecast. Grid description: quadratic grid, it is the Lambert Projection DDOM: xfirst: 2.55 yfirst: 42.95 xsize: 105.0 ysize: 49.0 xinc: 0.15 yinc: 0.15 xnpole: 0.0 ynpole: 0.0

  • The horizontal grid spacing for MESONH is here 2 km. The domain size is 192 x 180 gridpoints covering the COPS area. The vertical grid has 50 levels up to 20 km with a grid length varying from 60 m close to the surface to 600 m at high altitude. The model was integrated forward for 30 hours every day starting from 00 UTC ECMWF analysis and keeping outputs every 15 minutes. More information is available at http://mesonh.aero.obs-mip.fr/mesonh/cops/ Grid description: CDOM: xfirst: 6.0 yfirst: 47.0 xsize: 251.0 ysize: 151.0 xinc: 0.02 yinc: 0.02 xnpole: 0.0 ynpole: 0.0

  • 72h forecast with MM5 V3.7, nested run using - mm5_60 run as input - 15km x 15km resolution - 77 x 73 Grids - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: 2.800095 yfirst: 42.172424 xsize: 76.0 ysize: 72.0 xinc: 0.02 yinc: 0.14 xnpole: 0.0 ynpole: 0.0

  • ALADIN is the operational model at Meteo-France. The horizontal resolution is 9.5km, the time step : 415s with a Semi-lagrangian scheme. There are 46 vertical levels with 15 levels below 3000m. The domain of the integration is : (-11.84W, 33.14E) (25N,56.95N) Physical parameterization: - the micro-physics scheme use 4 prognostic variables: liquid and ice cloud water, rain and snow. - the convection scheme is based on Bougeault (1985) with a donwdraft parameterization. - the operational ECMWF radiation code which is called every 60 minutes. - the burbulence is based on Louis's function with an interactive mixing length. ALADIN is coupled with ARPEGE every 3 hours and has its own assimilation system based on 3DVAR. The post-processing in GRIB files is done on a regular LAT-LON Grid with a 0.1 deg resolution on the DPHASE domain. ALADIN-FRANCE daily performs 54h forecasts starting at 0TU, 6TU, 12TU, 18TU (only the 0UTC forecast until 30h is sent) Grid description: DDOM: xfirst: 2.0 yfirst: 43.0 xsize: 161.0 ysize: 71.0 xinc: 0.1 yinc: 0.1 xnpole: 0.0 ynpole: 0.0

  • Non hydrostatic model Moloch, developed at ISAC CNR and operational at ARPAL CFMI-PC. Initial and boundary conditions provided by the model chain based on bolam and initialized with the 00 UTC ECMWF run. Grid description: DDOM: xfirst: -1.99 yfirst: -1.93 xsize: 200.0 ysize: 194.0 xinc: 0.02 yinc: 0.02 xnpole: -171.0 ynpole: 45.0

  • Accurate initialization of the water vapor field is important for NWP. With recent advances in Global Positioning System (GPS) atmospheric remote sensing, ground-based GPS receivers have become an important instrument that can provide high resolution water vapor measurements operationally at low cost with an accuracy of a few millimeters. The system can operate in all weather conditions. During the COPS campaign, a dense network of GPS receivers was installed. This data has been assimilated in real-time into the MM5 4DVAR system to improve quantitative precipitation forecasts and process understanding. Operational forecasts initialized with 4DVAR and corresponding CONTROL forecasts, initialized only by the ECMWF forecast,ran the whole COPS/D-PHASE period to provide a basis for future statistical investigations. This experiment contains only the innermost domain (2km) of the forecast initialized with the operational ECMWF forecast only (CONTROL). The corresponding 4DVAR forecast can be found as experiment dphase_mm5_2_4d. Assimilation run: - 18 km horizontal resolution - 36 level up tp 100 hPa - 64x70 grid points - MM5 3.4 (4DVAR version) - Kuo convection scheme - MRF PBL scheme - Simple radiation - Warm cloud microphysics - 3 hour assimilation window Free forecast run: only innermost 2km domain (CDOM) was archived) - Triple 2-way nested 24h forecast (18, 6, 2 km resolution) - 36 level up to 100 hPa - 64x70 points (18 km), 106x109 points (6 km), 169x184 points (2 km) - MM5 3.7.4 - Kain Fritsch 2 cumulus (no parameterization in the 2 km domain) - Reisner2 cloud microphysics - RRTM LW + Dudhia SW radiation - MRF PBL scheme - 5 layer soil model Note: here the datasets differ in time resolution (DDOM:1h, CDOM 15min) not in region. Grid description:"CDOM"+"DDOM":xinc/yinc:2.0 xnpole/ynpole:0.0 xfirst:6.0205 yfirst:47.0167 xsize:184.0 ysize:169.0