From 1 - 10 / 123
  • Accurate initialization of the water vapor field is important for NWP. With recent advances in Global Positioning System (GPS) atmospheric remote sensing, ground-based GPS receivers have become an important instrument that can provide high resolution water vapor measurements operationally at low cost with an accuracy of a few millimeters. The system can operate in all weather conditions. During the COPS campaign, a dense network of GPS receivers was installed. This data has been assimilated in real-time into the MM5 4DVAR system to improve quantitative precipitation forecasts and process understanding. Operational forecasts initialized with 4DVAR and corresponding CONTROL forecasts, initialized only by the ECMWF forecast,ran the whole COPS/D-PHASE period to provide a basis for future statistical investigations. This experiment contains only the innermost domain (2km) of the forecast initialized with the operational ECMWF forecast only (CONTROL). The corresponding 4DVAR forecast can be found as experiment dphase_mm5_2_4d. Assimilation run: - 18 km horizontal resolution - 36 level up tp 100 hPa - 64x70 grid points - MM5 3.4 (4DVAR version) - Kuo convection scheme - MRF PBL scheme - Simple radiation - Warm cloud microphysics - 3 hour assimilation window Free forecast run: only innermost 2km domain (CDOM) was archived) - Triple 2-way nested 24h forecast (18, 6, 2 km resolution) - 36 level up to 100 hPa - 64x70 points (18 km), 106x109 points (6 km), 169x184 points (2 km) - MM5 3.7.4 - Kain Fritsch 2 cumulus (no parameterization in the 2 km domain) - Reisner2 cloud microphysics - RRTM LW + Dudhia SW radiation - MRF PBL scheme - 5 layer soil model Note: here the datasets differ in time resolution (DDOM:1h, CDOM 15min) not in region. Grid description:"CDOM"+"DDOM":xinc/yinc:2.0 xnpole/ynpole:0.0 xfirst:6.0205 yfirst:47.0167 xsize:184.0 ysize:169.0

  • 72h forecast with MM5 V3.7 using - 60km x 60km resolution - 55 x 45 Grids - NOAA GFS input - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: -6.769222 yfirst: 34.404968 xsize: 55.0 ysize: 45.0 xinc: 0.2 yinc: 0.54 xnpole: 0.0 ynpole: 0.0

  • 72h forecast with MM5 V3.7, nested run using - mm5_60 run as input - 15km x 15km resolution - 77 x 73 Grids - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: 2.800095 yfirst: 42.172424 xsize: 76.0 ysize: 72.0 xinc: 0.02 yinc: 0.14 xnpole: 0.0 ynpole: 0.0

  • 72h forecast with MM5 V3.7, nested run using - mm5_15 run as input - 3.75km x 3.75km resolution - 57 x 49 Grids - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: 10.207822 yfirst: 46.897579 xsize: 66.0 ysize: 48.0 xinc: 0.0005 yinc: 0.035 xnpole: 0.0 ynpole: 0.0

  • This experiment contains forecasts from the LME (COSMO-EU) model of DWD (7km horizontal resolution, 40 model levels). Model runs are started every 6h at 00, 06, 12 and 18 UTC with a forecast range of +72h. LME (COSMO-EU) is an operational forecast model of DWD. The output is mostly according to the tigge+ list. Descriptions of the differences to TIGGE+ can be found in the summary of the data sets. For a detailed description of the LME (COSMO-EU) model, please contact the originator of the data. Grid description: CDOM: xfirst: -2.73 yfirst: -2.927 xsize: 177.0 ysize: 112.0 xinc: 0.063 yinc: 0.063 xnpole: -170.0 ynpole: 40.0 DDOM: xfirst: -5.882 yfirst: -6.685 xsize: 177.0 ysize: 112.0 xinc: 0.063 yinc: 0.063 xnpole: -170.0 ynpole: 40.0

  • The horizontal grid spacing for MESONH is here 2 km. The domain size is 192 x 180 gridpoints covering the COPS area. The vertical grid has 50 levels up to 20 km with a grid length varying from 60 m close to the surface to 600 m at high altitude. The model was integrated forward for 30 hours every day starting from 00 UTC ECMWF analysis and keeping outputs every 15 minutes. More information is available at http://mesonh.aero.obs-mip.fr/mesonh/cops/ Grid description: CDOM: xfirst: 6.0 yfirst: 47.0 xsize: 251.0 ysize: 151.0 xinc: 0.02 yinc: 0.02 xnpole: 0.0 ynpole: 0.0

  • The Canadian Meterological Centre (CMC) is running the Global Environmental Multiscale (GEM) model in limited-area mode for the duration of the MAP D-PHASE project (1 June - 31 November 2007). The model is run once-daily directly from operational GEM meso-global forecast data (grid spacing of 33 km). A pair of domains are used for the project with horizontal grid spacings of 15 km and 2.5 km. This outer (low resolution or driving) grid is initialized daily at 0000 UTC and covers all of Europe, out to the British Isles, the North Sea, and Nortern Africa. The timestep for this forecast is 300 sec and outputs are available hourly. No regional analysis or data assimilation cycle is undertaken during this project. All observational data will therefore be ingested only indrectly in the regional setup through the outer grid initialization and hourly boundary updates from the meso-global model. The GEM model is a semi-implicit, semi-Lagrangian, two time-level, non-hydrostatic model that runs in a wide variety of configurations. An updated version (v3.3.0) of the GEM model is being used for the MAP D-PHASE project in preparation for the Vancouver 2010 Olympic Games project. This version takes advantage of recent developments designed to enhance the quality of guidance over regions of steeply-sloping orography, including the addition of a 6-category bulk microphysics scheme and time-varying orography over the initialization period. For more information on -the GEM model dynamics: see Cote et al (1998) [Mon. Wea. Rev.]. -the model physics package: contact Recherche en Prevision Numerique for the related technical document by Mailhot. -the model's microphysics scheme: see Milbrandt and Yau (2007) [Mon. Wea. Rev.]. Grid description: DDOM: xfirst: 2.0 yfirst: 43.0 xsize: 201.0 ysize: 101.0 xinc: 0.08 yinc: 0.07 xnpole: 0.0 ynpole: 0.0

  • Non hydrostatic model Moloch, developed at ISAC CNR and operational at ARPAL CFMI-PC. Initial and boundary conditions provided by the model chain based on bolam and initialized with the 00 UTC ECMWF run. Grid description: DDOM: xfirst: -1.99 yfirst: -1.93 xsize: 200.0 ysize: 194.0 xinc: 0.02 yinc: 0.02 xnpole: -171.0 ynpole: 45.0

  • Forecast data are modelled by the parallel version of the hydrostatic BOlogna Limited Area Model (BOLAM) operational at the Italian National Agency for Environmental Protection and Technical Services in Rome (Italy). This parallel version, called QBOLAM, is employed in an operational setting as a part of the Sistema Idro-Meteo-Mare (Hydro-Meteo-Marine System; SIMM) forecasting chain, with a 11-km grid step over a domain covering the entire Mediterranean basin. The QBOLAM11 model is forced with the QBOLAM33 forecast data, neglecting the first 12 hours (spin-up time), producing a 48-h forecast starting at 0000 UTC. The QBOLAM 33 runs are instead initialized using the 1200 UCT European Centre for Medium-Range Weather Forecasts analyses and forecasts. The SIMM modelling chain includes also a 10-km WAve model (WAM) over the Mediterranean Sea, a shallow-water version of the Princeton Ocean Model (POM) for sea elevation over the Adriatic Sea and a finite element model for sea elevation in the Venice Lagoon (VL-FEM). For DPHASE project, forecast data are provided over a subdomain (referred as DDOM) of the original domain (which covers the entire Mediterranean Basin). Forecast data will be also available on the COPS domain (referred as CDOM). Not all the meteorological fields selected for the experiment are provided, since some of these are not produced by the QBOLAM model. Grid description: Please note that the westermost longitude and the southermost latitude points refer to the sub-domain chosen for MAP DPHASE. The QBOLAM original domain covers the Mediterranean Basin. CDOM: xfirst: -6.0 yfirst: 8.4 xsize: 54.0 ysize: 27.0 xinc: 0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.5 DDOM: xfirst: -9.5 yfirst: 4.4 xsize: 147.0 ysize: 67.0 xinc:0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.5

  • Aladin-Austria daily numerical weather forecast. It is a hydrostatical model, where the equations are solved by transformation to the spectral form. For the microphysics a Kessler-Typ scheme is used. Two runs are conducted each day at 00:00, 12:00 (72 hours forecast range). The horizontal resolution amounts to 9.6 km, on 45 pressure levels in the vertical. The domain spans Central Europe. Grid description: quadratic grid, Lambert Projection DDOM: xfirst: 2.53 yfirst: 42.94 xsize: 142.0 ysize: 102.0 xinc: 0.11 yinc: 0.07 xnpole: 0.0 ynpole: 0.0

Barrierefreiheit | Datenschutz | Impressum