From 1 - 10 / 18
  • This directory (experiment) contains volcanic SO2 data derived from limb viewing satellites for the lower stratosphere from 1998 to 2012. The usage of the data is described in Timmreck et al., (2018), datasets VolcDB1 and VolcDB1_3D. We provide 3D-plumes of observed volume mixing ratio perturbations in the lower stratosphere / upper troposphere typically derived from 10-day periods as nc-files and integrated values of injected SO2 mass with peak latitudes and altitudes as Fortran formatted ascii files (A11,5(1X,I3),I4,4(1X,I3),5(1X,I2),I3,4(1X,I2)) for at maximum 5 events at one time. Instead of A11 I2,I5,I5 can be used to read in the components of time. The data from Dec. 1997 to Jan. 2002 are based on L2-files of SAGE II (V7.0) provided by the NASA DAAC (Thomason et al., 2008). The data from Jul. 2002 to Mar. 2012 use the updated 5-day time series of MIPAS (Hoepfner et al., 2015), supplemented by SO2 derived from GOMOS extinctions (Bingen et al., 2017, with a corresponding table). SO2volc3D_pap_T42L90r.nc: 3D SO2 for 131 events in T42L90 resolution (ECHAM-grid in grid_T42L90.nc) surface to about 80km).. SO2volc3D_pap_T63L90r.nc: same in T63L90 resolution (ECHAM-grid in grid_T63L90.nc). Here a downscaling by 0.7 for low latitude eruptions is recommended because of less removal by overshooting convection (The data in the T42 file and in the table in Bingen et al 2017 were upscaled within the measurement uncertainty to overcome the model artifact in low resolution, this applies only for the ENVISAT part from Jul. 2002 on). Latitude from South to North, for use with ECHAM please reverse. The levels on the hybrid-grid in the grid files are defined as lev(x,y,z)=hyam(z)+hybm(z)*apsave(x,y), in Pa (apsave annual average of surface pressure or orography). Volcano_or_region_echam_merged_dd_mm_yyyy.txt: integrated SO2 mass injected (in kt), SAGE and ENVISAT period. The postscript-file is an example on the T42 grid, the *doc-file includes the volcano names for the data in the *.txt Files, see also http://wwww.volcano.si.edu (Smithsonian volcano database). AEROCOM-DIEHL_UMZ1_tropo11.nc: Fluxes from outgassing volcanoes in the troposphere (below 200hPa), taken from AEROCOM (Diehl, 2012; Caution, filled with odd climatology after 2009, monthly, beginning in Jan. 1950) AEROCOM-DIEHL_1297-0312_tropo11.nc: Subset beginning Dec. 1997.

  • This directory contains volcanic SO2 data derived from limb viewing satellites for the lower stratosphere from 1990 to 2019. The usage of the data is described in Timmreck et al., (2018), datasets VolcDB1 and VolcDB1_3D. We provide 3D-plumes of observed volume mixing ratio perturbations in the lower stratosphere / upper troposphere typically derived from 10-day periods as nc-file and integrated values of injected SO2 mass with peak latitudes and altitudes as Fortran formatted ascii file (33X,A11,5X,6(I3,1X),I4,1X,5(I3,1X),6(I3,1X),I5,1X,4(I3,1X),I3) for at maximum 6 events at one time. Instead of A11 I2,A4,I5 can be used to read in the components of time. The data from Jan. 1990 to Jan. 2002 are based on L2-files of SAGE II (V7.0) provided by the NASA DAAC (Thomason et al., 2008). The data from Jul. 2002 to Mar. 2012 use the updated 5-day time series of MIPAS (Hoepfner et al., 2015), supplemented by SO2 derived from GOMOS extinctions (Bingen et al., 2017, with a corresponding table, scaled for lower resolution). After March 2012 based on OSIRIS (Rieger et al., 2019). volc_SO2-3D-vmr-perturbation-1990-2019.nc: 3D SO2 for 258 days with eruptions in T63L90 resolution (ECHAM-grid in grid-T63L90.nc). Latitude from South to North, for use with ECHAM please reverse. The levels on the hybrid-grid in the grid files are defined as lev(x,y,z)=hyam(z)+hybm(z)*apsave(x,y), in Pa (apsave annual average of surface pressure or orography), surface to 80km (update of VolcDB1_3D). This version contains the factors of Brühl et al. (2018) for MIPAS included in the ascii-file with the integrals and which were missing in Version 2 (SSIRC_2). volc-so2-inventory.ps: plot of zonal averages of SO2 perturbation at 3 altitudes (gaps not shown, widths of bars have no meaning). volc-SO2-mass.txt: integrated SO2 mass injected (in kt), SAGE, ENVISAT and OSIRIS period (update of VolcDB1). The volcano names are in the first column, see also http://www.volcano.si.edu (Smithsonian volcano database), Schallock et al. (2021) and SSIRC_1 (doi:10.1594/WDCC/SSIRC_1). AEROCOM-DIEHL-degassing-volc-SO2.nc: Fluxes from outgassing volcanoes in the troposphere (below 210hPa), taken from AEROCOM (Diehl et al., 2012). Caution, filled with odd climatology after 2009, monthly (subset beginning Jan. 1990). volc-globalforcing-tropo.nc: EMAC results for instanteneous global radiative radiative forcing by stratospheric aerosol near the tropopause (in W/m2), figure see Schallock et al. (2021)

  • This directory contains volcanic SO2 data derived from limb viewing satellites for the lower stratosphere from 1990 to 2019. The usage of the data is described in Timmreck et al., (2018), datasets VolcDB1 and VolcDB1_3D. We provide 3D-plumes of observed volume mixing ratio perturbations in the lower stratosphere / upper troposphere typically derived from 10-day periods as nc-file and integrated values of injected SO2 mass with peak latitudes and altitudes as Fortran formatted ascii file (33X,A11,5X,6(I3,1X),I4,1X,5(I3,1X),6(I3,1X),I5,1X,4(I3,1X),I3) for at maximum 6 events at one time. Instead of A11 I2,A4,I5 can be used to read in the components of time. The data from Jan. 1990 to Jan. 2002 are based on L2-files of SAGE II (V7.0) provided by the NASA DAAC (Thomason et al., 2008). The data from Jul. 2002 to Mar. 2012 use the updated 5-day time series of MIPAS (Hoepfner et al., 2015), supplemented by SO2 derived from GOMOS extinctions (Bingen et al., 2017, with a corresponding table, scaled for lower resolution). After March 2012 based on OSIRIS (Rieger et al., 2019). volc_SO2-3D-vmr-perturbation-1990-2019.nc: 3D SO2 for 258 days with eruptions in T63L90 resolution (ECHAM-grid in grid-T63L90.nc). Latitude from South to North, for use with ECHAM please reverse. The levels on the hybrid-grid in the grid files are defined as lev(x,y,z)=hyam(z)+hybm(z)*apsave(x,y), in Pa (apsave annual average of surface pressure or orography), surface to 80km (update of VolcDB1_3D). volc-so2-inventory.ps: plot of zonal averages of SO2 perturbation at 3 altitudes (gaps not shown, widths of bars have no meaning). volc-SO2-mass.txt: integrated SO2 mass injected (in kt), SAGE, ENVISAT and OSIRIS period (update of VolcDB1). The volcano names are in the first column, see also http://www.volcano.si.edu (Smithsonian volcano database), Schallock et al. (2021) and SSIRC_1 (doi:10.1594/WDCC/SSIRC_1). AEROCOM-DIEHL-degassing-volc-SO2.nc: Fluxes from outgassing volcanoes in the troposphere (below 210hPa), taken from AEROCOM (Diehl et al., 2012). Caution, filled with odd climatology after 2009, monthly (subset beginning Jan. 1990). volc-globalforcing-tropo.nc: EMAC results for instanteneous global radiative radiative forcing by stratospheric aerosol near the tropopause (in W/m2), figure see Schallock et al. (2021)

  • The MPIC/DLR "climate" water vapor product, developed within ESA's "GOME Evolution" project, provides a consistent time series of monthly mean H2O columns from the satellite instruments GOME, SCIAMACHY, and GOME-2 (MetopA). Consistency amongst the different instruments (including cloud treatment) is substantially improved by (1) merging SCIAMACHY and GOME-2 observations to GOME pixel size, and (2) reducing the GOME-2 swath width to GOME/SCIAMACHY swath, thereby mimicking GOME-like observation conditions for all three sensors. WARNING: Version 1.0 is based on spectral analysis settings which have slightly changed during the GOME-2 timeseries, introducing a small but clear "jump" in the TCWV timeseries at the turn of the years 2012/2013. This version should not be used any more! Use version >2.2 instead! doi:10.1594/WDCC/GOME-EVL_water_vapor_clim_v2.2

  • The "climate" water vapor product developed within ESA's "GOME-Evolution" project provides a consistent time series of monthly mean global maps of total column water vapor derived from the satellite instruments GOME, SCIAMACHY, and GOME-2 (Metop-A). Consistency amongst the different instruments (including cloud treatment) is substantially improved by (1) merging SCIAMACHY and GOME-2 observations to GOME pixel size, and (2) reducing the GOME-2 swath width to GOME/SCIAMACHY swath, thereby mimicking GOME-like observation conditions for all three sensors. Use version >2.2 instead! doi:10.1594/WDCC/GOME-EVL_water_vapor_clim_v2.2

  • The "climate" water vapor product developed within ESA's "GOME-Evolution" project provides a consistent time series of monthly mean global maps of total column water vapor derived from the satellite instruments GOME, SCIAMACHY, and GOME-2 (Metop-A). Consistency amongst the different instruments (including cloud treatment) is substantially improved by (1) merging SCIAMACHY and GOME-2 observations to GOME pixel size, and (2) reducing the GOME-2 swath width to GOME/SCIAMACHY swath, thereby mimicking GOME-like observation conditions for all three sensors. This is Version 2.2

  • We detect and quantify NOx point sources from the divergence of the horizontal NOx flux based on the continuity equation. The analysis steps are: - The NOx flux is determined for each TROPOMI (TROPOspheric Monitoring Instrument) orbit by upscaling the TROPOMI tropospheric NO2 column to NOx and multiplying it with horizontal wind fields from ECMWF (300m above ground). - The NOx fluxes are averaged for 2018-2019. - The divergence, i.e. spatial derivative, of the mean NOx flux is calculated, which is particularly sensitive for point sources. - NOx point sources are detected in the divergence map by an automated search algorithm for local maxima, and quantified by fitting a Gaussian function to these maxima. Ambiguous cases are skipped. TROPOMI is the satellite instrument on board of the Copernicus Sentinel-5 Precursor satellite. The approach of deriving emission information from the divergence of the NOx flux is described in Beirle et al., 2019: Beirle, S., Borger, C., Dörner, S., Li, A., Hu, Z., Liu, F., Wang, Y. and Wagner, T.: Pinpointing nitrogen oxide emissions from space, Science Advances, 5(11), eaax9800, doi:10.1126/sciadv.aax9800, 2019. The details and modifications made for the automated detection of NOx point sources on global scale are provided in Beirle et al., 2020: Beirle, S., Borger, C., Dörner, S., Eskes, H., Kumar, V., de Laat, A., and Wagner, T.: Catalog of NOx emissions from point sources as derived from the divergence of the NO2 flux for TROPOMI, to be submitted to Earth System Science Data, 2020.

  • This directory contains volcanic SO2 data derived from limb viewing satellites for the lower stratosphere from 1990 to 2019. The usage of the data is described in Timmreck et al., (2018), datasets VolcDB1 and VolcDB1_3D. We provide 3D-plumes of observed volume mixing ratio perturbations in the lower stratosphere / upper troposphere typically derived from 10-day periods as nc-file and integrated values of injected SO2 mass with peak latitudes and altitudes as Fortran formatted ascii file (33X,A11,5X,6(I3,1X),I4,1X,5(I3,1X),6(I3,1X),I5,1X,4(I3,1X),I3) for at maximum 6 events at one time. Instead of A11 I2,A4,I5 can be used to read in the components of time. The data from Jan. 1990 to Jan. 2002 are based on L2-files of SAGE II (V7.0) provided by the NASA DAAC (Thomason et al., 2008). The data from Jul. 2002 to Mar. 2012 use the updated 5-day time series of MIPAS (Hoepfner et al., 2015), supplemented by SO2 derived from GOMOS extinctions (Bingen et al., 2017, with a corresponding table, scaled for lower resolution). After March 2012 based on OSIRIS (Rieger et al., 2019). volc_SO2-3D-vmr-perturbation-1990-2019.nc: 3D SO2 for 258 days with eruptions in T63L90 resolution (ECHAM-grid in grid-T63L90.nc). Latitude from South to North, for use with ECHAM please reverse. The levels on the hybrid-grid in the grid files are defined as lev(x,y,z)=hyam(z)+hybm(z)*apsave(x,y), in Pa (apsave annual average of surface pressure or orography), surface to 80km (update of VolcDB1_3D). This version contains the factors of Brühl et al. (2018) for MIPAS included in the ascii-file with the integrals and which were missing in Version 2 (SSIRC_2). volc-so2-inventory.ps: plot of zonal averages of SO2 perturbation at 3 altitudes (gaps not shown, widths of bars have no meaning). volc-SO2-mass.txt: integrated SO2 mass injected (in kt), SAGE, ENVISAT and OSIRIS period (update of VolcDB1). The volcano names are in the first column, see also http://www.volcano.si.edu (Smithsonian volcano database), Schallock et al. (2021) and SSIRC_1 (doi:10.1594/WDCC/SSIRC_1). AEROCOM-DIEHL-degassing-volc-SO2.nc: Fluxes from outgassing volcanoes in the troposphere (below 210hPa), taken from AEROCOM (Diehl et al., 2012). Caution, filled with odd climatology after 2009, monthly (subset beginning Jan. 1990). volc-globalforcing-tropo.nc: EMAC results for instanteneous global radiative radiative forcing by stratospheric aerosol near the tropopause (in W/m2), figure see Schallock et al. (2021)

  • This directory contains volcanic SO2 data derived from limb viewing satellites for the lower stratosphere from 1990 to 2019. The usage of the data is described in Timmreck et al., (2018), datasets VolcDB1 and VolcDB1_3D. We provide 3D-plumes of observed volume mixing ratio perturbations in the lower stratosphere / upper troposphere typically derived from 10-day periods as nc-file and integrated values of injected SO2 mass with peak latitudes and altitudes as Fortran formatted ascii file (33X,A11,5X,6(I3,1X),I4,1X,5(I3,1X),6(I3,1X),I5,1X,4(I3,1X),I3) for at maximum 6 events at one time. Instead of A11 I2,A4,I5 can be used to read in the components of time. The data from Jan. 1990 to Jan. 2002 are based on L2-files of SAGE II (V7.0) provided by the NASA DAAC (Thomason et al., 2008). The data from Jul. 2002 to Mar. 2012 use the updated 5-day time series of MIPAS (Hoepfner et al., 2015), supplemented by SO2 derived from GOMOS extinctions (Bingen et al., 2017, with a corresponding table, scaled for lower resolution). After March 2012 based on OSIRIS (Rieger et al., 2019). volc_SO2-3D-vmr-perturbation-1990-2019.nc: 3D SO2 for 258 days with eruptions in T63L90 resolution (ECHAM-grid in grid-T63L90.nc). Latitude from South to North, for use with ECHAM please reverse. The levels on the hybrid-grid in the grid files are defined as lev(x,y,z)=hyam(z)+hybm(z)*apsave(x,y), in Pa (apsave annual average of surface pressure or orography), surface to 80km (update of VolcDB1_3D). volc-so2-inventory.ps: plot of zonal averages of SO2 perturbation at 3 altitudes (gaps not shown, widths of bars have no meaning). volc-SO2-mass.txt: integrated SO2 mass injected (in kt), SAGE, ENVISAT and OSIRIS period (update of VolcDB1). The volcano names are in the first column, see also http://www.volcano.si.edu (Smithsonian volcano database), Schallock et al. (2021) and SSIRC_1 (doi:10.1594/WDCC/SSIRC_1). AEROCOM-DIEHL-degassing-volc-SO2.nc: Fluxes from outgassing volcanoes in the troposphere (below 210hPa), taken from AEROCOM (Diehl et al., 2012). Caution, filled with odd climatology after 2009, monthly (subset beginning Jan. 1990). volc-globalforcing-tropo.nc: EMAC results for instanteneous global radiative radiative forcing by stratospheric aerosol near the tropopause (in W/m2), figure see Schallock et al. (2021)

  • We present an updated (v2) catalog of NOx emissions from point sources as derived from TROPOMI measurements of NO2 (PAL product, May 2018 - Nov 2021) combined with wind fields from ERA5. Compared to version 1 of the catalog, several improvements have been introduced to the algorithm. Most importantly, several corrections are applied, accounting for the effects of plume height on satellite sensitivity, 3D topographic effects, and the chemical loss of NOx , resulting in considerably higher and more accurate NOx emissions. In addition, error estimates are provided for each point source, taking into account the uncertainties of the individual retrieval steps. The catalog v2 is based on a fully automated iterative detection algorithm of point sources worldwide. It lists 1139 locations that have been found to be significant NOx sources. The majority of these locations match to power plants listed in the global power plant database. Other NOx point sources correspond to cement plants, metal smelters, industrial areas, or medium-sized cities.

Barrierefreiheit | Datenschutz | Impressum