The WMS D-AERO (INSPIRE) comprises airborne geophysical surveys for mapping the shallow subsurface in Germany. Since the eighties BGR carries out helicopter borne measurements in Germany as well as in neighbouring and distant countries. In particular a series of continuous areas on the German North Sea coast are flown during the last years within the context of the D-AERO project. The helicopter of type Sikorsky S-76B is operated for the airborne geophysical survey of the earth's subsurface. Usually airborne electromagnetic, magnetic and radiometric measurements are carried out. According to the Data Specification on Geology (D2.8.II.4_v3.0, sub-theme Geophysics) the information with respect to the airborne geophysical surveys is INSPIRE-compliant. The WMS D-AERO (INSPIRE) contains for each airborne geophysical survey one layer, e.g. GE.flightLine.G081Cuxhaven. The flightlines are displayed correspondingly to the INSPIRE portrayal rules. Via the getFeatureInfo request, the user obtains the content of the INSPIRE attributes platformType und profileType. Additionally, the WMS contains a campaign layer (GE.airborneGeophysicalSurvey) with the INSPIRE attributes campaignType and surveyType.
Since the eighties BGR carries out helicopter borne measurements in Germany as well as in neighbouring and distant countries. In particular a series of continuous areas on the German North Sea coast are flown during the last years within the context of the D-AERO project. The helicopter of type Sikorsky S-76B is operated for the airborne geophysical survey of the earth's subsurface. Usually airborne electromagnetic, magnetic and radiometric measurements are carried out. The 13 GML files for each airborne geophysical survey area together with a Readme.txt file are provided in ZIP format (D-AERO-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements of data specification Geology (D2.8.II.4_v3.0), Sub-theme Geophysics.
BGR conducted within the project „Airborne geophysical surveys for mapping the shallow subsurface in Germany “ (D-AERO) airborne surveys at the German North Sea coast. The survey area Esens (2008/09) ranges from about Dornum and Aurich in the west to Wittmund and Werdum in the east. The size of the area is about 370 km². The area was surveyed with 23 flights totalling to 1542 line-km (437,562 survey points). The nominal separation of the 75 N-S lines and 8 W-E tie lines was 250 m and 2000 m, respectively. The maps display the geophysical parameters apparent resistivity and centroid depth derived from the HEM data at the six frequencies of the HEM system (0.4 - 130 kHz). Furthermore, horizontal and vertical slices were derived from layered-earth models (resistivities and thicknesses of six model layers).
BGR conducted in 2013-2016 the research project "ErzExploration Erzgebirge E³" together with the Helmholtz Institute Freiberg for Resource Technology (HIF) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the Technical University Bergakademie Freiberg (TUBAF) to explore mineral resources in the vicinity of the city of Geyer, Erzgebirge. The size of the area is about 135 km². The area was surveyed with 16 flights totalling to 1653 line-km (418,603 survey points). The nominal separation of the 189 NW-SE lines and 14 SE-NW tie lines was 100 m and 500 m, respectively. The two ASCII datafiles contain the raw data as well as the processed HEM data at the six frequencies of the HEM system (0.4 - 130 kHz).
BGR conducted an airborne survey in the region of Gnarrenburg (Lower Saxony) as part of the BGR project D-AERO-Moore. This project is a study to survey the mires near Gnarrenburg with the BGR airborne geophysical standard measuring system. The peatland is located about 30 km northeast of the city of Bremen between Bremervörde and Worpswede . The size of the area is about 173 km². The area was surveyed with 6 flights totalling to 778 line-km (206,972 survey points). The nominal separation of the 62 WNW-ESE lines and 6 NNE-SSW tie lines was 300 m and 1500 m, respectively. In addition, 33 NNO-SSW lines at 100 m line separation were flown. The two ASCII datafiles contain the raw data as well as the processed HEM data at the six frequencies of the HEM system (0.4 - 130 kHz).
BGR conducted within the project „Airborne geophysical surveys for mapping the shallow subsurface in Germany “ (D-AERO) airborne surveys at the German North Sea coast. The survey area Langeoog (2008/09) comprises the island of Langeoog, the western portion of the island of Spiekeroog, the Wadden Sea to the south of the islands as well as an onshore stripe ranging from about Dornum in the west to Werdum in the east. The size of the area is about 259 km². The area was surveyed with 12 flights totalling to 1080 line-km (314,672 survey points). The nominal separation of the 68 N-S lines and 7 W-E tie lines was 250 m and 2000 m, respectively. The maps display the geophysical parameters apparent resistivity and centroid depth derived from the HEM data at the six frequencies of the HEM system (0.4 - 130 kHz). Furthermore, horizontal and vertical slices were derived from layered-earth models (resistivities and thicknesses of six model layers).
BGR conducted an airborne survey in the region of the Hadelner Marsch in cooperation with the GGA Institute (now LIAG) as well as with the water suppliers of Land Hadeln and Wingst. The survey area Hadelner Marsch (2004) is bounded by the river Elbe to the north and by the settlements Bederkesa and Lamstedt to the south. The size of the area is about 700 km². The area was surveyed with 20 flights totalling to 3019 line-km (771,397 survey points). The nominal separation of the 117 ESE-WNW lines and 13 NNE-SSW tie lines was 250 m and 2000 m, respectively. The two ASCII datafiles contain the raw data as well as the processed HEM data at the five frequencies of the HEM system (0.4 - 140 kHz).
BGR conducted an airborne survey in the region of the Ahlenmoor (Lower Saxony) as part of the BGR project D-AERO-Moore. Cunducting tests of their airborne system, the BGR surveys a portion of the Ahlenmoor with the BGR airborne geophysical standard measuring system. The peatland is located about 15 km northeast of the city of Bremerhaven close to Ahlen-Falkenberg. The size of the area is about 15 km². The area was surveyed with 2 flights totalling to 105 line-km (28,258 survey points). The nominal separation of the 16 WNW-ESE lines and 2 NNE-SSW tie lines was 125 m and 2000 m, respectively. The two ASCII datafiles contain the raw data as well as the processed HEM data at the six frequencies of the HEM system (0.4 - 130 kHz).
BGR conducted an airborne survey in the region of Finsterwalde (Brandeburg) as part of the BGR project D-AERO-Finsterwalde. This project is a pilot study to survey the "Finsterwalder Restlochkette" with the BGR airborne geophysical standard measuring system. The former lignite mining area is located between Finsterwalde and Lauchhammer in Lower Lusatia about 50 km southwest of Cottbus. The size of the area is about 250 km². The area was surveyed with 8 flights totalling to 1263 line-km (298,642 survey points). The nominal separation of the 107 NW-SE lines and 35 NE-SW tie lines was 250 m and 625-3125 m, respectively. The two ASCII datafiles contain the raw data as well as the processed HEM data at the six frequencies of the HEM system (0.4 - 130 kHz).
BGR conducted an airborne survey in the region of the Stassfurt-Egeln salt anticline as part of a BMBF research project "Dynamic processes in flooded or abandoned salt mines and their overburden”. The survey area Stassfurt (2007) is bounded by the towns and settlements Aschersleben, Kroppenstedt, Hadmersleben, Altenweddingen, Atzendorf, Förderstedt and Bernburg. The size of the area is about 467 km². The area was surveyed with 29 flights totalling 5137 line-km (1,344,787 survey points). The nominal separation of the 197 SE-NW lines and 39 NE-SW tie lines was 100 m and 1000 m, respectively. The two ASCII datafiles contain the raw data as well as the processed HEM data at the six frequencies of the HEM system (0.4 - 133 kHz).