From 1 - 10 / 20
  • Lake Runstedt, around 30 km west of Leipzig, is a post-mining lake created by the flooding of the former Großkayna open-cast mine. After the end of the lignite mining, the pit was partially filled with industrial waste and fly ash for several decades. With high concentrations of ammonium in the sediment, oxygen consumption due to nitrification of ammonium released into the lake is a major challenge to the lake’s water quality. To ensure the oxygen supply in the hypolimnion (i.e. the bottom lake layer that is not affected by wind mixing) in summer, three aerators are operated in the lake by the Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft (LMBV). In 2023, the Freiberg University of Mining and Technology was commissioned by the BGR to carry out three measurement campaigns (end of July/beginning of August, mid-September, mid-October) on the lake using an autonomous surface vehicle (here: a catamaran-shaped robotic device) to assess the spatial effects of the aeration on lake water quality. The data set provided contains the collected three-dimensional data of water temperature, oxygen content, pH, electrical conductivity, turbidity and chlorophyll. In addition, laboratory analyses of water samples obtained with a Ruttner sampler are included. The data reflect the conditions before and after operation of the aerators. Detailed explanations can be found in the publication “Spatial heterogeneity of dissolved oxygen and sediment fluxes revealed by autonomous robotic lakewater profiling” (2025) by Röder et al. in the journal Limnology and Oceanography (http://doi.org/10.1002/lno.70174).

  • Spatially and temporally high-resolution data was acquired with the aid of multispectral sensors mounted on UAV and a gyrocopter platform for the purpose of classification. The work was part of the research and development project „Modern sensors and airborne remote sensing for the mapping of vegetation and hydromorphology along Federal waterways in Germany“ (mDRONES4rivers) in cooperation of the German Federal Institute of Hydrology (BfG), Geocoptix GmbH, Hochschule Koblenz und JB Hyperspectral Devices.  Within the project period (2019-2022) data was collected at different sites situated in Germany along the Rivers Rhine and Oder. All published data produced within the project can be found by searching for the keyword ‘mDRONES4rivers‘.  In this dataset, the following UAS data and metadata of the project site ‘Nonnenwerth’ (center coordinates [WGS84]: 50.637541°N, 7.208834°E; area: 8 ha) at the Rhine River in Germany is available for download: •             Multispectral orthophotos (GeoTiff; 6 bands: B, G, R, Red-Edge, NIR, Flag; camera: Micasense; resolution: 25 cm; abbreviation: MS_RAW) •             RGB-orthophotos (GeoTiff; 3 bands: R, G, B; camera: Phantom; resolution: 25 cm; abbreviation: PH_ORTHO) •             Digital Surface Models (GeoTiff; 1 band; camera: Phantom; resolution: ca. 5 cm; abbreviation: PH_DEM) •             associated Technical Reports (PDF; technical metadata concerning data acquisition, and processing using Agisoft Metashape, 1x for multispectral orthophotos, 1x for RGB-orthophotos + digital surface model) The above-mentioned files are provided for download as dataset stored in one directory per season depending on the date of data acquisition (e.g. mDRONES4rivers_NW_UAV_2019_01_Winter.zip = projectname_projectsite_platform_year_no.season_name.season). To provide an overview of all files and general background information plus data preview the following files are stored in the info.zip folder:  •             Overview table and metadata of the above-mentioned data (xlsx) •             Summary (PDF, Detailed description of sensors and data acquisition procedure, 1x for multispectral orthophotos, 1x for RGB-orthophotos + digital surface models) Note: the data was processed with focus on spectral information and not for geodetic purposes. Georeferencing accuracy has not been checked in detail.