During the period from 1974 to 2018 various cruises from BGR acquired seismic lines worldwide. The aim of these marine expeditions was a detailed survey of the geological structure.
In the period from 22nd December, 1987 to 15th January, 1988 a geophysical reconnaissance survey has been carried out with S.V. EXPLORA on the Argentine Eastern continental margin. A total of 3,675 km of digital seismic reflection profiles in parallel with gravimetric and in part magnetic measurements, and 13 sonobuoy refraction profiles were recorded during this survey. The general aim of the survey was to search the Argentine eastern continental margin between 37°S and 47°S for evidence of continent-ocean boundary structures previously recognized by us off South Africa. The following preliminary results were obtained: (1) Five regional seismic markers/unconformities have been observed, named from bottom to top AR V to AR I. (2) Two units are recognizable on all reflection seismic records: A buried lower unit the top of which is marked by the distinct 'AR IV' unconformity of presumably Beriasian/Valangian age, and a tectonically undisturbed upper sedimentary unit. (3) The dominant feature of the lower unit is a 50 km to 100 km broad wedge-shaped body characterized by an internally divergent pattern of reflection horizons having seaward dip. The seismic characteristics and recent ODP drilling is consistent with the wedge being formed from extrusive basaltic rocks. (4) The more than 5000 m thick wedge is parallel with the shelf edge and can be traced continuously for 1200 km. Its landward pinchout coincides with the magnetic slope anomaly 'G'. (5) A giant contourite mound of Neogene age has been recognized in the southeastern part of the survey area. (6) Bottom simulating reflectors have been recognized. Their occurrence is associated with the contourite mound.
On the first leg of SONNE cruise SO-36 in the period from 11th February to 12th March 1985, geophysical investigations have been carried out on the Lord Howe Rise off eastern Australia by the Federal Institute for Geosciences and Natural Resources (BGR) in co-operation with the Bureau of Mineral Resources, Geology and Geophysics, Canberra. A total of 3,660 km of digital seismic reflection profiles, 6,740 km of gravity, magnetics, multibeam echosounder and sub-bottom profiler profiles, as well as 8 sonobuoy refraction profiles were recorded during this survey. A geomagnetic monitoring station of the BGR was operated during a part of the cruise on Lord Howe Island under the supervision of the BMR. These measurements provided a detailed picture of the structures of the survey area of the Lord Howe Rise. The samples proved that the Lord Howe Rise and the Dampier Ridge west of it consist of continental crust. Indications for structures rich in hydrocarbons were not observed. The 2nd and 3rd leg of SONNE cruise SO-36 were designed to investigate the structure, geological development and hydrocarbon potential of two frontier areas, the western and southwestern continental margin of Tasmania and the South Tasman Rise. On the 2nd leg (12.03.-12.04.1985) multichannel seismic reflection measurements were carried out in parallel with magnetic, gravimetric, sea-beam and 3.5 kHz subbottom profiler measurements on 19 lines with a total length of 3,820 km. In addition, 2,140 km were surveyed with magnetics, gravity meter, sea-beam and 3.5 kHz subbottom profiler in transit from and to Sydney, respectively. On the 3rd leg, which started in Sydney on 12th April 1985 and ended in Suva/Fiji one month later, 63 stations were sampled by dredging and coring with the aim (a) to provide lithology and biostratigraphic information about the seismic sequences mapped during leg 2, and (b) to obtain geochemical evidence of hydrocarbon generation from the character of gases absorbed onto the surficial sediment. Samples came from 33 stations off Western Tasmania, from 23 stations on the South Tasman Rise, and from 7 stations in the region of the Lord Howe Rise and the Dampier Ridge. In transit to the sampling sites, 11 single channel seismic lines with a total length of 470 km were surveyed, and in addition, 4,230 km were surveyed with magnetics, gravity meter, sea-beam, and subbottom profiler. Seven regional seismic unconformities were recognized and sampled, and the structural style of both areas was established. Thermogenic hydrocarbons in substantial concentration were found in the surface sediments at the western Tasmanian slope.
Reconnaissance surveys were carried out in 1975 within the framework of the BGR program "Geoscientific studies in the North Atlantic". The data format is Society of Exploration Geophysicists SEG Y. The areas covered were the continental margin of Spitsbergen, the Barents Sea and the Norwegion continental margin. On the vessel LONGVA (30th August, 1975 - 29th September, 1975) multichannel seismic measurements were carried out on 37 lines with a total length of 2,815 km.
The BGR Antarctic cruise 1996 from 29th December 1995 to 6th February 1996 with M.S. AKADEMIK NEMCHINOV was designed to acquire new marine geophysical data for a better understanding of the geological processes, timing, occurrence and location of rifts of the initial break-up of southern Gondwanaland. A total of 3,836 km of multichannel seismic reflection data have been collected in the areas of the Cosmonaut Sea, the Astrid Ridge, the Lazarev Sea and the southern Agulhas Plateau in parallel with magnetic and gravity measurements. In addition magnetic and gravity measurements were carried out on transit. Major new observations of the collected MCS data include: (1) Volcanic rocks play a major part in the construction of the Astrid Ridge and also of the Agulhas Plateau. (2) The early opening of the Lazarev Sea was associated with excessive volcanism resulting in the emplacement of a voluminous volcanic body characterized by an internally divergent pattern of seaward-dipping reflectors. (3) The Astrid Fracture Zone continues in form of a sediment-filled basement depression flanked by distinct basement highs into the Lazarev Sea, and apparently swings to the west parallel to the coast of Queen Maud Land. (4) The thickness of sediments in the Cosmonaut Sea overlying oceanic crust of inferred Early Cretaceous age is in excess of 4s (twt), i.e. about 6,000 m. Three regional seismic markers of inferred Cretaceous, Late Eocene-Oligocene and Middle Miocene ages subdivide the sedimentary column.
The MSM67 SEGMENT research cruise was carried out between August 31st and October 4th 2017 aboard the research vessel MARIA S. MERIAN. Survey MSM67 SEGMENT it is intended to study the architecture of the rifted continental margin off East Greenland around the Jan Mayen fracture zone. Key issues to be addressed are margin segmentation and the location of the continent-ocean transition (COT). Both subjects are highly debated. Symmetric segmentation of conjugate margins has significant implications on our general understanding of continental rifting processes, and a margin-parallel COT off East Greenland would indicate an N-S opening in the Norwegian/Greenland Sea. The latter challenging most publications on the early evolution of the North Atlantic. A major open question is also the timing, duration and distribution of magmatism that resulted in the formation of the North Atlantic large igneous province. Previous suggestions of very short (~3 Myr) periods of intense magmatism have been challenged and a much longer duration and/or a post-breakup origin are under discussion. Here, we want to establish the amount of post-breakup magmatism as evident in high-velocity lower crust and test the dependence of magmatism with distance from the proposed hot-spot under Iceland and the influence of major fracture zones on volcanism.
The area of the 1st leg of METEOR cruise no. 67 lies off the Moroccan coast between longitudes 32.5°N and 35°N and latitude 12°W. Within this continental margin segment multichannel reflection seismic measurements were carried out in parallel with magnetic and gravimetric measurements on 22 lines with a total length of 4,378 km during the period from January 20th to February 13th 1984, with the research objectives: i) to collect new geophysical data for a better understanding of magmatic-volcanic and tectonic processes during the initial drifting phase, and ii) to search for suitable positions for deep drilling sites of the "Ocean Drilling Programme" in the transition zone between continental and oceanic crust. A distinct and sharp reflection seismic boundary running from about 31°30'N/11°W in the south to 34°30'N/10°25'W in the north separates flat-lying Mesozoic sediments overlying slightly structured basement of the Jurassic "Magnetic Quiet Zone" from the complex Moroccan piercement zone in the east. A prominent magnetic anomaly, called S1, is nearly coincident with the sharp reflection seismic boundary, and is thought to represent most probably the initial drifting zone. The Moroccan piercement zone is interpreted to represent the eastern part of a pre-Jurassic rift-basin which conjugated western part lies off Nova Scotia/Canada. Subsidence associated with small-scale rotational block-faulting was time-transgressive in the Moroccan piercement zone, e.g. it started in Triassic time in the central part of the rift-basin and affected successively its landward parts apparently due to successively cooling of the stretched and thinned crust. Weak magnetic anomalies trending approximately NE-SW were recorded within the Jurassic "Magnetic Quiet Zone" lying west of magnetic anomaly S1. These anomalies can be correlated over distances of up to 300 km. They are interpreted to represent either variations of the geomagnetic field intensity or field reversals during a time of weak geomagnetic field.
From 19th November to 19th December 2004 BGR conducted a marine geophysical cruise between 34°S and 36°S off Uruguay and between 46°S and 50°S off Argentine. The main research objective was to contribute to a better understanding of the initial breakup and the early opening of the South Atlantic. In continuation of our former work on the South Atlantic continental margins off Argentina, Brazil, Uruguay, Namibia and South Africa marine geophysical research (multi-channel seismics, refraction-/wide-angle reflection seismics, magnetics and gravity) was performed in close cooperation with the Argentine and Uruguayan authorities Comisión Nacional del Límite Exterior de la Plataforma Continental (COPLA) of Argentina and Servicio de Oceanograficia, Hidrograficia y Meteorologia de la Armada (SOHMA) of Uruguay. Multi-channel seismic lines with a total length of 3,754 km and additional 3540 km with the other geophysical methods were acquired . Along two lines refraction-/wide-angle reflection seismic work was carried out. The preliminary analyses of the new seismic data show different images of the crustal structures between Uruguay and southern Argentine with regard to the distribution and volume of offshore volcanic rocks (seaward dipping reflector sequences, SDRS) along the South American Atlantic margin. On the northern profiles between 34°S and 36°S one single well developed wedge of SDRS is present. Although the landward termination (‘feather edge’) on most of the lines is masked by multiples the average total width of the wedge across the margin seems to be 90 – 100 km and is very constant for this margin segment. This is strong contrast to the results from former cruises (BGR87, SO85 and BGR98) which covered the area between 38°S and 45°S. There, the SDRS showed distinct multiple wedges which in some places extend over 120 km across the continental slope. The investigation of the sedimentary section yielded that in the area off Uruguay widespread bottom simulating reflectors (BSR) are present. This indications for stable gas hydrates cover a total area of 7000 km2. One major aim of the cruise was to cover the transition between a volcanic passive margin and a non-volcanic passive resp. sheared margin. This was accomplished in the southern part of the investigated area. Two EW-trending profiles across the Argentine shelf into the Argentine Basin still show indications for SDRS but these structures are only 25 – 30 km wide. The profiles which extend from the NE to the SW crossing the Agulhas-Falkland Fracture Zone (AFFZ) onto the Falkland Plateau show the typical trend of a sheared margin. At the northern rim of the Falkland Plateau a set of small pre-rift half grabens were found indicating pre-rift extensional tectonic phases. The magnetic data in the area off Uruguay show lineations which are preliminary interpreted as chrons M0 to M3. This might indicate that the first (oldest) oceanic crust was created at a time around the magnetic polarity reversal between the normal interval M4 and the reversed interval M3 (126-127 Ma). Together with existing data from previous cruises this indicates that the breakup of the South Atlantic started further South because there magnetic chrons back to M9 (130 Ma) were identified. In the southernmost part of the margin at 47°S only the magnetic lineations M0 to M4 were identified in the oceanic domain Nevertheless, it is likely that between M4 and the assumed position of the continent ocean boundary/transition (COB/COT) older oceanic crust exists that for some reasons does not show correlatable lineations. The the free-air gravity map is dominated by the main topographic and structural features in the survey area. Rifted continental margins are characterized by prominent free-air gravity anomalies elongated parallel to the ocean-continent transition. The continental slope is considerably steeper in the North off Uruguay than in the South and thus the gravity high is much more pronounced in the North than in the South. The simple Bouguer anomaly map also shows the difference between the more gentle and wider continental slope in the South and the steeper slope in the North. The lowest Bouguer gravity values are found in the area of the basins on the continental shelf. Especially the Salado Basin in the prolongation of the Rio de la Plata and the Colorado Basin at about 40°S are indicated by Bouguer gravity anomaly highs. The interpretation by forward density modelling shows, however, the presence of SDRS units in the North of relative high density in the area of the continental slope. Whereas the modelling shows no indications for such volcanic bodies in the South. Although the MCS data indicate a small SDRS wedge but this body may be too small to cause an anomaly.From 17th April to 6th June 2003 BGR conducted a marine geophysical cruise between 30°S and 38°S off the Atlantic coast of South Africa. The main research objective was to contribute to a better understanding of the initial breakup and the early opening of the South Atlantic. In continuation of our former work on the South Atlantic continental margins off Argentina, Brazil, Uruguay and Namibia marine geophysical research (multi-channel seismics, wide-angle refraction seismics, magnetics and gravity) was performed in cooperation with the Petroleum Agency South Africa (PASA). Multi-channel lines with a total lenght of 3,260 km, and additional 1,365km, with the other geophysical methods were acquired. Combined onshore/offshore refraction seismic work in cooperation with GeoForschungsZentrum Potsdam (Germany) and the Council for Geoscience (South Africa) was also part of the program.
SONNE cruise SO-85 was designed to study the variability of the oceanic crustal structure along flow-line profiles over Early Tertiary through Early Cretaceous old crust in the Cape and Argentine basins of the South Atlantic. Between 21th February and 20th April 1993 deep imaging seismic reflection data in parallel with magnetic, gravimetric and hydroacoustic measurements have been collected along a 1,405 km long flow-line traverse across the Cape basin, and along three flow-line traverses across the Argentine basin with a total length of 4,255 km. A special geophysical survey was carried out on the Argentine continental margin. Although bad weather hampered the geophysical measurements in the Argentine basin, some new and intriguing observations were made: (1) the presence of an elongated wedge of seaward dipping reflectors, often associated with the distinct magnetic anomaly 'G', was confirmed on both, the South African and Argentine continental margins; (2) the sequence of seaward-dipping reflectors consists of two wedges. The younger wedge rests partly on the older one; (3) the surface of the oceanic crust lies more deep in the Argentine basin than in the Cape basin; (4) the structure of the oceanic crust is more variable in time and space within the Argentine and Cape basins than within the Angola and Brazil basins; (5) despite this, it appears that the oceanic crust generated during the younger half of the Cretaceous magnetic quiet period up to C 33r is characterized by relative high reflectivity in lower crustal levels; (6) high-amplitude magnetic anomalies C 33 through C 34 are apparently correlatable with oceanic crustal segments characterized by common seismic features, e.g. a smooth and scarped surface of the oceanic crust; (7) an elongated, positive gravity anomaly exists at about 58°E between 43.5°E and 47°E.
The initial study area of the cruise MSM14/2 GeoNORM (Geophysik im noerdlichen Roten Meer) was the northern Red Sea. However, because of not given research permissions from Egypt and Saudi Arabia, the study area had to be changed to the alternative study area Eratosthenes Seamount (ESM), south of Cyprus. The ESM is supposed to represent a continental fragment of the former African-Arabian Plate that is entering the subduction zone south of Cyprus i.e. the subduction turns into collision in the area of the ESM. This changed the entire tectonic setting in the Eastern Mediterranean. Therefore, the tectonic evolution of the area is rather complex with phases of extension, subduction, compression, salt tectonics and gravitational processes and not comprehensively understood. Because of the isolation of the ESM as a continental fragment this region is an ideal spot to investigate the transition from regular subduction to continental collision and its associated tectonic processes i.e. faults were activated or reactivated, transform motion has to be compensated, the overriding plate has been elevated. This impacts the ongoing geological and tectonic processes in this region but also influences the social and economic life in the Eastern Mediterranean as earthquakes and submarine landslides are possible geohazards and the entering of the ESM to the subduction trench alters the thermal history of the adjacent sedimentary basins significantly what should have an influence on the maturity processes within the source rock sediments and new faults open new migration paths for hydrocarbon fluids or gases.