From 1 - 10 / 202
  • This dataset contains all data, which have been used to write the linked paper. In addition, it contains all Python scripts used for the evaluation of the data. It should be noted that the Python module pynocular is used within the scripts. This module is not yet published, but it is planned for release via https://github.com/baw-de.

  • The Weser estuary at the German North Sea coast serves as a fairway to the harbours of Bremerhaven and Bremen. To ensure safe shipping and navigation, the navigation channel depths are nowadays intensively monitored, and have been so in the past. These are valuable data for consulting and research purposes, and enables investigations leading to a better understanding of hydrodynamics, salt intrusion and morphological processes in the estuary, in the present as well as the past. For recent years, thanks to modern monitoring techniques and digitalization, measuring data has been compiled to consistent digital terrain models of high quality and accuracy. For time periods before the 1990ies however, measurements were scarcer and the data are available only in form of printed bathymetrical and nautical charts. The objective of the project “Historical system states of the Weser estuary (HIWEST)” was to: • digitalize depths measurements starting from 1960, • georeference the data points and • process and compile them to digital terrain models that can be used for research and consulting. The project was led and financed by the Federal Waterways Engineering and Research Institute (BAW). It was supported by the Federal Maritime and Hydrographic Agency (BSH) and by the German Water and Shipping Administration (WSV) who provided printed charts and scanned data sets. The smile consulting GmbH was contracted to process the data and compile digital terrain models. One of the main challenges of the project was georeferencing. While georeferencing and projecting in the horizontal domain was comparatively straightforward, the transformation of depths below different chart datums to the Germans mean height reference system represented a challenge. This was accomplished by an algorithm considering spatial polygons provided by BSH and further meta information on the different levelling systems. The accuracy of the data sets differs depending on the quality of the original data. Since the 1990ies, powerful measurement methods such as airborne laser scanning (ALS) and multibeam echo-sounding has led to high resolutions and high data accuracy. In past surveys, the depths were measured in single-beam echo-soundings, often along individual cross sections, and there is no information between these soundings. As a result, the older terrain models are much smoother then the newer ones and contain less detailed information. More technical details can be found in the appendix of the technical report. The following digital terrain models (DTM, in the following the German abbreviation DGM is used) of the Lower and Outer Weser estuary were made available: • DGM 1966, marking the situation before deepening the Outer Weser to SKN-12 m</li> • DGM 1972, marking the situation before deepening the Lower Weser to SKN-9 m</li> • DGM 1981, marking the situation before extensive river works in the Lower Weser</li> • DGM 1996, marking the situation before deepening the Outer Weser to SKN-14 m</li> • DGM 2002, marking the situation after deepening the Outer Weser to SKN-14 m, reference digital terrain model. The years were chosen so they would represent consistent periods not affected by constructive engineering measures such as channel deepenings, and secondly based on optimal data availability. Each data set however consists not only of data from the respective year, but data had to be added from adjacent years. To close gaps, data from recent surveys were used. The data sets span the whole estuary from the North Sea to the tidal weir in the city of Bremen and are available as 1x1 m raster data sets. How to cite the HIWEST data: <strong style="color: red;"> The data set is only to be quoted together with the Technical Report.</strong> Report: Bundesanstalt für Wasserbau (2021): Historical digital terrain models of the Weser Estuary (HIWEST). Technical Report B3955.02.04.70168-6. Bundesanstalt für Wasserbau. https://henry.baw.de/handle/20.500.11970/107521 Data set: Bundesanstalt für Wasserbau (2020): Historical digital terrain model data of the Weser Estuary (HIWEST) [Data set]. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.5200.0001

  • HydBCsForOF is a set of hydraulic engineering boundary conditions for the Volume-of-Fluid solver "interfoam" of OpenFOAM. This is neither a part of openfoam nor endorsed by the owners of OpenFOAM. The provided boundary conditions allow the specification of water flow rates for variable water levels and the prescribtions of water levels with variable flow rates.

  • This dataset contains in-situ measurements of ship-generated wave heights and currents collected during 14 campaigns from 1998 to 2022 in German coastal waterways. It includes 81,092 filtered datapoints (from an initial 97,877) across 46 measurement stations in 28 cross-sections, with 23 unique locations, some of which were repeated after a certain time. Each wave event is linked to the ship and nautical parameters responsible for its generation. A more detailed metadata description for each campaign is attached to the dataset. Citation for this data set: Seemann, A.; Melling, G. (2024): Ship Wave Measurements in German Coastal Waterways from 1998 to 2022 [Dataset], DOI: https://doi.org/10.48437/42c292-ebac3d

  • Navigation Lock Filling - Modeled Geometry and Physical Model Measurement Data This data set provides the geometry files and physical model measurement data for the filling process of a large navigation lock with a ship in the lock chamber from a water saving basin. The measured data contains water levels, pressure differences, forces on the ship and the opening height of the valves. The lock consists of a lock chamber with a pressure chamber underneath. Both chambers are hydraulically connected with vertical cylindrical filling nozzles inside the floor between both chambers. The three lateral saving basins are connected to the pressure chamber via two lateral culverts each of smoothly varying rectangular shape. Each saving basin has two of these connecting culverts. A vertical lifting valve in each culvert allows the controlled filling operation from the saving basins into the pressure chamber. In the experiment, the lock chamber is filled from the lowest saving basin. The physical model was constructed at a scale of 1:25. The provided data (geometry and model test results) is scaled to prototype scale by Froude's similitude. The data was used in the following publication: Thorenz, C., Schulze, L. (2021): Numerical Investigations of Ship Forces During Lockage. Journal of Coastal and Hydraulic Strucures. Please cite the paper when using the data.

  • Die synoptischen Daten zur Hydrodynamik aus EasyGSH-DB wurden mit der Modellfamilie UnTRIM2-SediMorph-UnK für den Zeitraum von 1996 bis einschließlich 2015 berechnet. Die Modellkonfiguration, -kalibrierung und –validierung kann dem offiziellen Validierungsdokument (https://doi.org/10.18451/k2_easygsh_1) entnommen werden. Informationen zur Qualität und Beschaffenheit der Produktjahre 1996-2015 können den jeweiligen Jahreskennblättern entnommen werden. Beim nachfolgenden Link muss vom Nutzer die Jahreszahl ohne „<>“ ergänzt werden: https://doi.org/10.18451/k2_easygsh_jkbl_<1996-2015>. Die synoptischen Daten wurden nach der Berechnung vom unstrukturierten Modellgitter in ein regelmäßiges NetCDF Raster mit einer Rasterweite von 1.000m überführt und in geographische Koordinaten transformiert. Die zeitlichen Abstände wurden auf 20 Minuten Intervalle festgelegt. Die zeitaufgelösten Daten zur Hydrodynamik in der Deutschen Bucht gliedern sich in Jahresscheiben des Wasserstands, der Strömung, der Bodenschubspannung, des Seegangs und des Salzgehalts. Die räumliche Ausdehnung der Bodenschubspannung wurde auf die deutsche 12 Seemeilen Hoheitsgrenze limitiert. Die verbleibenden Ergebnisgrößen sind räumlich auf das EasyGSH-DB Produktgebiet festgelegt. Methode: Das auf der Methode der Finiten Differenzen / Finite Volumen basierende zwei- und drei-dimensionale mathematische Verfahren UNTRIM2 dient der Simulation stationärer und instationärer Strömungs- und Transportprozesse in Gewässern mit freier Wasseroberfläche. Im Gegensatz zu klassischen Finite Differenzen Verfahren arbeitet UNTRIM2 auf einem unstrukturierten orthogonalen Gitter. Die Topografie des Modellgebietes kann mit Hilfe der SubGrid-Technolgie unterhalb der Auflösung des Berechnungsgitters mit großer Genauigkeit beschrieben werden. Eine genauere Beschreibung des Programms UnTRIM2 befindet sich im BAWiki (http://wiki.baw.de/de/index.php/UNTRIM2). Daten: Die synoptischen Daten der Hydrodynamik liegen auf Basis von netCDF Dateien vor. Weiterverarbeitung: Die synoptischen Daten wurden gerastert und analysiert, die daraus gewonnen Produkte sind unter: - EasyGSH-DB: Harmonische Analyse des Wasserstandes (FRQW) - EasyGSH-DB: Langzeitkennwerte des Salzgehaltes (LZKS) - EasyGSH-DB: Langzeitkennwerte des Seegangs (LZSS) - EasyGSH-DB: Langzeitkennwerte des Wasserstands (LZKW) - EasyGSH-DB: Tidekennwerte der Bodenschubspannung (TDKB) - EasyGSH-DB: Tidekennwerte der Strömungsgeschwindigkeit (TDKV) - EasyGSH-DB: Tidekennwerte des Salzgehaltes (TDKS) - EasyGSH-DB: Tidekennwerte des Wasserstandes (TDKW) zufinden (siehe Untergeordnete Objekte). Literatur: - Hagen, R., et.al., (2019), Validierungsdokument - EasyGSH-DB - Teil: UnTRIM-SediMorph-Unk, doi: https://doi.org/10.18451/k2_easygsh_1 Zitat für diesen Datensatz (Daten DOI): Hagen, R., Plüß, A., Schrage, N., Dreier, N. (2020): EasyGSH-DB: Themengebiet - synoptische Hydrodynamik. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0004 English: Synoptic hydrodynamics data from EasyGSH-DB were computed using the UnTRIM2-SediMorph-UnK model family for the period from 1996 to 2015, inclusive. Download: The data for download can be found under References ("Weitere Verweise"), where the data can be downloaded directly or via the web page redirection to the EasyGSH-DB portal or THREDDS Data Server.

  • Der Featuredienst EasyGSH-DB: Hydrodynamik 2002 (WFS), beinhaltet die Produkte der Hydrodynamikanalysen aus dem Projekt EasyGSH-DB. Literatur: - Hagen, R., et.al., (2019), Validierungsdokument - EasyGSH-DB - Teil: UnTRIM-SediMorph-Unk, doi: https://doi.org/10.18451/k2_easygsh_1 - Freund, J., et.al., (2020), Flächenhafte Analysen numerischer Simulationen aus EasyGSH-DB, doi: https://doi.org/10.18451/k2_easygsh_fans_2 - Hagen, R., Plüß, A., Ihde, R., Freund, J., Dreier, N., Nehlsen, E., Schrage, N., Fröhle, P., Kösters, F. (2021): An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015). Earth System Science Data. https://doi.org/10.5194/essd-13-2573-2021 Für die einzelnen Jahre liegen Jahreskennblätter als Kurzfassung der Jahresvalidierung auf der EasyGSH-DB (www.easygsh-db.org) zur Verfügung. Zitat für diesen Datensatz (Daten DOI): Hagen, R., Plüß, A., Freund, J., Ihde, R., Kösters, F., Schrage, N., Dreier, N., Nehlsen, E., Fröhle, P. (2020): EasyGSH-DB: Themengebiet - Hydrodynamik. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0003

  • Der Featuredienst EasyGSH-DB: Hydrodynamik 2013 (WFS), beinhaltet die Produkte der Hydrodynamikanalysen aus dem Projekt EasyGSH-DB. Literatur: - Hagen, R., et.al., (2019), Validierungsdokument - EasyGSH-DB - Teil: UnTRIM-SediMorph-Unk, doi: https://doi.org/10.18451/k2_easygsh_1 - Freund, J., et.al., (2020), Flächenhafte Analysen numerischer Simulationen aus EasyGSH-DB, doi: https://doi.org/10.18451/k2_easygsh_fans_2 - Hagen, R., Plüß, A., Ihde, R., Freund, J., Dreier, N., Nehlsen, E., Schrage, N., Fröhle, P., Kösters, F. (2021): An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015). Earth System Science Data. https://doi.org/10.5194/essd-13-2573-2021 Für die einzelnen Jahre liegen Jahreskennblätter als Kurzfassung der Jahresvalidierung auf der EasyGSH-DB (www.easygsh-db.org) zur Verfügung. Zitat für diesen Datensatz (Daten DOI): Hagen, R., Plüß, A., Freund, J., Ihde, R., Kösters, F., Schrage, N., Dreier, N., Nehlsen, E., Fröhle, P. (2020): EasyGSH-DB: Themengebiet - Hydrodynamik. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0003

  • Die Quantile (1% und 99%) des Salzgehaltes jeweils für die Jahre 1996-2015. Quantile des Salzgehalts: Wert des Salzgehalts einer Zeitreihe, der von einem bestimmten prozentualen Anteil der vorliegenden Salzgehaltswerte nicht überschritten wird. Wird nur für dauerhaft überflutete Gebiete berechnet. Eine genaue Beschreibung der Analysemodi befindet sich im BAWiki (http://wiki.baw.de/de/index.php/Tideunabhängige_Kennwerte_des_Salzgehalts). Literatur: - Hagen, R., et.al., (2019), Validierungsdokument - EasyGSH-DB - Teil: UnTRIM-SediMorph-Unk, doi: https://doi.org/10.18451/k2_easygsh_1 - Freund, J., et.al., (2020), Flächenhafte Analysen numerischer Simulationen aus EasyGSH-DB, doi: https://doi.org/10.18451/k2_easygsh_fans_2 - Hagen, R., Plüß, A., Ihde, R., Freund, J., Dreier, N., Nehlsen, E., Schrage, N., Fröhle, P., Kösters, F. (2021): An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015). Earth System Science Data. https://doi.org/10.5194/essd-13-2573-2021 Für die einzelnen Jahre liegen Jahreskennblätter als Kurzfassung der Jahresvalidierung auf der EasyGSH-DB (www.easygsh-db.org) zur Verfügung. Zitat für diesen Datensatz (Daten DOI): Hagen, R., Plüß, A., Freund, J., Ihde, R., Kösters, F., Schrage, N., Dreier, N., Nehlsen, E., Fröhle, P. (2020): EasyGSH-DB: Themengebiet - Hydrodynamik. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0003 English Download: The data for download can be found under References ("Weitere Verweise"), where the data can be downloaded directly or via the web page redirection to the EasyGSH-DB portal.

  • Der Coveragedienst EasyGSH-DB: Hydrodynamik 2000 (WCS), beinhaltet die Produkte der Hydrodynamikanalysen aus dem Projekt EasyGSH-DB. Literatur: - Hagen, R., et.al., (2019), Validierungsdokument - EasyGSH-DB - Teil: UnTRIM-SediMorph-Unk, doi: https://doi.org/10.18451/k2_easygsh_1 - Freund, J., et.al., (2020), Flächenhafte Analysen numerischer Simulationen aus EasyGSH-DB, doi: https://doi.org/10.18451/k2_easygsh_fans_2 - Hagen, R., Plüß, A., Ihde, R., Freund, J., Dreier, N., Nehlsen, E., Schrage, N., Fröhle, P., Kösters, F. (2021): An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015). Earth System Science Data. https://doi.org/10.5194/essd-13-2573-2021 Für die einzelnen Jahre liegen Jahreskennblätter als Kurzfassung der Jahresvalidierung auf der EasyGSH-DB (www.easygsh-db.org) zur Verfügung. Zitat für diesen Datensatz (Daten DOI): Hagen, R., Plüß, A., Freund, J., Ihde, R., Kösters, F., Schrage, N., Dreier, N., Nehlsen, E., Fröhle, P. (2020): EasyGSH-DB: Themengebiet - Hydrodynamik. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0003